Quasi-classical generalized CRF structures

被引:0
|
作者
Izu Vaisman
机构
[1] University of Haifa,
来源
关键词
Generalized complex structure; Generalized CRF structure; Holomorphic Poisson structure; 53C15; 53D17;
D O I
暂无
中图分类号
学科分类号
摘要
In an earlier paper, we studied manifolds M endowed with a generalized F structure Φ∈End(TM⊕T∗M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \in \mathrm{End}(TM\oplus T^*M)$$\end{document}, skew-symmetric with respect to the pairing metric, such that Φ3+Φ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi ^3+\Phi =0$$\end{document}. Furthermore, if Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} is integrable (in some well-defined sense), Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} is a generalized CRF structure. In the present paper, we study quasi-classical generalized F and CRF structures, which may be seen as a generalization of the holomorphic Poisson structures (it is well known that the latter may also be defined via generalized geometry). The structures that we study are equivalent to a pair of tensor fields (A∈End(TM),π∈∧2TM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A\in \mathrm{End}(TM),\pi \in \wedge ^2TM)$$\end{document}, where A3+A=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^3+A=0$$\end{document} and some relations between A and π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} hold. We establish the integrability conditions in terms of (A,π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A,\pi )$$\end{document}. They include the facts that A is a classical CRF structure, π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} is a Poisson bivector field and imA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{im}\,A$$\end{document} is a (non)holonomic Poisson submanifold of (M,π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,\pi )$$\end{document}. We discuss the case where either kerA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{ker}\,A$$\end{document} or imA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{im}\,A$$\end{document} is tangent to a foliation and, in particular, the case of almost contact manifolds. Finally, we show that the dual bundle of imA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{im}\,A$$\end{document} inherits a Lie algebroid structure and we briefly discuss the Poisson cohomology of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}, including an associated spectral sequence and a Dolbeault type grading.
引用
收藏
页码:53 / 71
页数:18
相关论文
共 50 条
  • [31] ON THE SATISFIABILITY OF QUASI-CLASSICAL DESCRIPTION LOGICS
    Zhang, Xiaowang
    Feng, Zhiyong
    Wu, Wenrui
    Hossain, Mokarrom
    MacCaull, Wendy
    [J]. COMPUTING AND INFORMATICS, 2017, 36 (06) : 1415 - 1446
  • [32] NEGATIVE ABSORPTION BY QUASI-CLASSICAL SYSTEMS
    GALTSOV, D
    [J]. ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1968, 9 (01): : 35 - &
  • [33] Quasi-Classical Approximation of Monopole Harmonics
    Yu. A. Kordyukov
    I. A. Taimanov
    [J]. Mathematical Notes, 2023, 114 : 1277 - 1288
  • [34] QUASI-CLASSICAL THEORY OF AMORPHOUS FERROMAGNETICS
    GUBANOV, AI
    [J]. SOVIET PHYSICS-SOLID STATE, 1960, 2 (03): : 468 - 471
  • [35] Quasi-Classical Approximation of Monopole Harmonics
    Kordyukov, Yu. A.
    Taimanov, I. A.
    [J]. MATHEMATICAL NOTES, 2023, 114 (5-6) : 1277 - 1288
  • [36] On the quasi-classical limit of the quadratic susceptibility
    Elyutin, PV
    Smirnova, OV
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 119 (01) : 471 - 480
  • [37] QUASI-CLASSICAL APPROXIMATION FOR THE BEAMSTRAHLUNG PROCESS
    SOLOVYOV, AV
    SCHAFER, A
    HOFMANN, C
    [J]. PHYSICAL REVIEW E, 1993, 47 (04): : 2860 - 2867
  • [38] QUASI-CLASSICAL APPROXIMATION IN NEUTRON SCATTERING
    KOSALY, G
    TURNER, RE
    [J]. PHYSICS LETTERS, 1962, 2 (06): : 266 - 268
  • [39] Quasi-classical asymptotics for the Pauli operator
    Sobolev, AV
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (01) : 109 - 134
  • [40] QUASI-CLASSICAL APPROXIMATION FOR THE PHASES OF SCATTERING
    DUBROVSKY, GV
    [J]. OPTIKA I SPEKTROSKOPIYA, 1964, 17 (05): : 771 - 775