Quasi-classical generalized CRF structures

被引:0
|
作者
Izu Vaisman
机构
[1] University of Haifa,
来源
关键词
Generalized complex structure; Generalized CRF structure; Holomorphic Poisson structure; 53C15; 53D17;
D O I
暂无
中图分类号
学科分类号
摘要
In an earlier paper, we studied manifolds M endowed with a generalized F structure Φ∈End(TM⊕T∗M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \in \mathrm{End}(TM\oplus T^*M)$$\end{document}, skew-symmetric with respect to the pairing metric, such that Φ3+Φ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi ^3+\Phi =0$$\end{document}. Furthermore, if Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} is integrable (in some well-defined sense), Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} is a generalized CRF structure. In the present paper, we study quasi-classical generalized F and CRF structures, which may be seen as a generalization of the holomorphic Poisson structures (it is well known that the latter may also be defined via generalized geometry). The structures that we study are equivalent to a pair of tensor fields (A∈End(TM),π∈∧2TM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A\in \mathrm{End}(TM),\pi \in \wedge ^2TM)$$\end{document}, where A3+A=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^3+A=0$$\end{document} and some relations between A and π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} hold. We establish the integrability conditions in terms of (A,π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A,\pi )$$\end{document}. They include the facts that A is a classical CRF structure, π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} is a Poisson bivector field and imA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{im}\,A$$\end{document} is a (non)holonomic Poisson submanifold of (M,π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,\pi )$$\end{document}. We discuss the case where either kerA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{ker}\,A$$\end{document} or imA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{im}\,A$$\end{document} is tangent to a foliation and, in particular, the case of almost contact manifolds. Finally, we show that the dual bundle of imA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{im}\,A$$\end{document} inherits a Lie algebroid structure and we briefly discuss the Poisson cohomology of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}, including an associated spectral sequence and a Dolbeault type grading.
引用
收藏
页码:53 / 71
页数:18
相关论文
共 50 条
  • [1] Quasi-classical generalized CRF structures
    Vaisman, Izu
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 51 (01) : 53 - 71
  • [2] A generalized quasi-classical Boltzmann equation
    Rossani, A
    Kaniadakis, G
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 277 (3-4) : 349 - 358
  • [3] Generalized quasi-classical Boltzmann equation for homogeneous reacting gases
    Groppi, M
    Rossani, A
    Spiga, G
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2003, 32 (5-7): : 567 - 586
  • [4] Generalized correspondence rules for quasi-classical dipole matrix elements
    Bezuglov, NN
    Borodin, VM
    [J]. OPTICS AND SPECTROSCOPY, 1999, 86 (04) : 467 - 473
  • [5] Quasi-Classical Description Logic
    Zhang, Xiaowang
    Lin, Zuoquan
    [J]. JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2012, 18 (3-4) : 291 - 327
  • [6] Resurgence in quasi-classical scattering
    Prange, RE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (49): : 10703 - 10719
  • [7] QUASI-CLASSICAL PURE GYROSCOPE
    RAFANELLI, K
    [J]. NUOVO CIMENTO A, 1967, 52 (02): : 342 - +
  • [8] PULSAR MAGNETOSPHERES - CLASSICAL AND QUASI-CLASSICAL DESCRIPTIONS
    DACOSTA, AA
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 1994, 216 (1-2) : 179 - 184
  • [9] QUASI-CLASSICAL TRANSFORMATION THEORY
    SCHILLER, R
    [J]. PHYSICAL REVIEW, 1962, 125 (03): : 1109 - &
  • [10] On quasi-classical nature of spin
    Ershova, Tamara P.
    Gorobey, Natalia N.
    Lukyanenko, Alexander S.
    [J]. NINTH INTERNATIONAL WORKSHOP ON NONDESTRUCTIVE TESTING AND COMPUTER SIMULATIONS, 2006, 6253