Multiseasonal discrete-time risk model revisited

被引:0
|
作者
Andrius Grigutis
Jonas Jankauskas
Jonas Šiaulys
机构
[1] Vilnius University,Institute of Mathematics
来源
关键词
discrete-time risk model; random walk; survival probability; generating function; branching process; initial values; 60G50; 60J80; 91G05;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we set up the distribution function of M:=supn≥1∑i=1nXi-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{M}:={\mathrm{sup}}_{n\ge 1}{\sum }_{i=1}^{n}\left({X}_{i}-1\right),$$\end{document} where the random walk ∑i=1nXi,n∈N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum }_{i=1}^{n}{X}_{i},n\in {\mathbb{N}},$$\end{document} is generated by N periodically occurring distributions, and the integer-valued and nonnegative random variablesX1,X2, . . . are independent. The considered random walk generates a so-called multiseasonal discrete-time risk model, and a known distribution of random variable M enables us to calculate the ultimate time ruin or survival probability. Verifying obtained theoretical statements, we demonstrate several computational examples for survival probability P(M < u) when N = 2, 3, or 10.
引用
下载
收藏
页码:466 / 486
页数:20
相关论文
共 50 条
  • [21] DISCRETE-TIME POSITIVE-REAL LEMMA REVISITED - THE DISCRETE-TIME COUNTERPART OF THE KALMAN-YAKUBOVITCH LEMMA
    PREMARATNE, K
    JURY, EI
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1994, 41 (11) : 747 - 750
  • [22] A review of discrete-time risk models
    Li, Shuanming
    Lu, Yi
    Garrido, Jose
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2009, 103 (02) : 321 - 337
  • [23] A discrete-time risk-structured model of cholera infections in Cameroon
    Che, Eric
    Yakubu, Abdul-Aziz
    JOURNAL OF BIOLOGICAL DYNAMICS, 2021, 15 (01) : 523 - 562
  • [24] Default risk analysis via a discrete-time cure rate model
    De Leonardis, Daniele
    Rocci, Roberto
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2014, 30 (05) : 529 - 543
  • [25] On a Discrete-Time Risk Model with Random Income and a Constant Dividend Barrier
    Bao, Zhenhua
    Huang, Junqing
    Wang, Jing
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [26] A discrete-time model of phenotypic evolution
    Cirne, Diego
    Campos, Paulo R. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 476
  • [27] A DISCRETE-TIME MODEL OF INTERACTIVE DIFFUSION
    INGENBLEEK, JF
    LEFEVRE, C
    JOURNAL OF MATHEMATICAL SOCIOLOGY, 1985, 11 (01): : 25 - 42
  • [28] The discrete-time bioresource sharing model
    Mazalov, V. V.
    Rettiyeva, A. N.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2011, 75 (02): : 180 - 188
  • [29] Bifurcations of a discrete-time neuron model
    Zhong, Jiyu
    Zhang, Liming
    Tigan, Gheorghe
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (09) : 1508 - 1528
  • [30] Oscillating epidemics: a discrete-time model
    Ramani, A
    Carstea, AS
    Willox, R
    Grammaticos, B
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 333 : 278 - 292