Homological congruence formulae for characteristic classes of singular varieties

被引:0
|
作者
Laurentiu Maxim
Shoji Yokura
机构
[1] University of Wisconsin-Madison,Department of Mathematics
[2] Kagoshima University,Department of Mathematics and Computer Science, Graduate School of Science and Engineering
来源
关键词
Characteristic classes for singular varieties; Hirzebruch classes; Signatures; Fiber bundles; Multiplicativity; 57R20; 14C17; 32S35; 14D06; 55N33; 13D15; 16E20; 14D05;
D O I
暂无
中图分类号
学科分类号
摘要
For a pair (f, g) of morphisms f:X→Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:X \rightarrow Z$$\end{document} and g:Y→Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g:Y \rightarrow Z$$\end{document} of (possibly singular) complex algebraic varieties X, Y, Z, we present congruence formulae for the difference f∗Ty∗(X)-g∗Ty∗(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_*T_{y*}(X) -g_*T_{y*}(Y)$$\end{document} of pushforwards of the corresponding motivic Hirzebruch classes Ty∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{y*}$$\end{document}. If we consider the special pair of a fiber bundle F↪E→B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F \hookrightarrow E \rightarrow B$$\end{document} and the projection pr2:F×B→B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{pr}_2:F {\times }B \rightarrow B$$\end{document} as such a pair (f, g), then we get a congruence formula for the difference f∗Ty∗(E)-χy(F)Ty∗(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_*T_{y*}(E) -\chi _y(F)T_{y*}(B)$$\end{document}, which at degree level yields a congruence formula for χy(E)-χy(F)χy(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _y(E) -\chi _y(F)\chi _y(B)$$\end{document}, expressed in terms of the Euler–Poincaré characteristic, Todd genus and signature in the case when F, E, B are non-singular and compact. We also extend the finer congruence identities of Rovi–Yokura to the singular complex projective situation, by using the corresponding intersection (co)homology invariants.
引用
收藏
页码:1267 / 1292
页数:25
相关论文
共 50 条
  • [21] On Analytic Todd Classes of Singular Varieties
    Bei, Francesco
    Piazza, Paolo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (19) : 14840 - 14881
  • [22] CHERN CLASSES OF SINGULAR TORIC VARIETIES
    BARTHEL, G
    BRASSELET, JP
    FIESELER, KH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (02): : 187 - 192
  • [23] Equivariant characteristic classes of singular hypersurfaces
    Grulha Jr, N. G.
    Monteiro, A.
    Morgado, M. F. Z.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2025, 36 (03)
  • [24] CHARACTERISTIC CLASSES AND EXISTENCE OF SINGULAR MAPS
    Kalmar, Boldizsar
    Terpai, Tamas
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (07) : 3751 - 3779
  • [25] Interpolation of characteristic classes of singular hypersurfaces
    Aluffi, P
    Brasselet, JP
    ADVANCES IN MATHEMATICS, 2003, 180 (02) : 692 - 704
  • [26] CHARACTERISTIC CLASSES OF SINGULAR TORIC VARIETES
    Maxim, Laurentiu
    Schurmann, Jorg
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2013, 20 : 109 - 120
  • [27] A survey of characteristic classes of singular spaces
    Schurmann, Jorg
    Yokura, Shoji
    SINGULARITY THEORY, 2007, : 865 - +
  • [28] SOME HOMOLOGICAL FORMULAE
    KNOPFMACHER, J
    JOURNAL OF ALGEBRA, 1968, 9 (02) : 212 - +
  • [29] LOCAL POLAR VARIETIES AND CHERN CLASSES OF SINGULAR-VARIETIES
    TRANG, LD
    TEISSIER, B
    ANNALS OF MATHEMATICS, 1981, 114 (03) : 457 - 491
  • [30] Chern classes for singular varieties, revisited.
    Aluffi, P
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (06) : 405 - 410