Characterization of the life cycle greenhouse gas emissions from wind electricity generation systems

被引:24
|
作者
Kadiyala A. [1 ]
Kommalapati R. [1 ,2 ]
Huque Z. [1 ,3 ]
机构
[1] Center for Energy and Environmental Sustainability, Prairie View A&M University, Prairie View, 77446, TX
[2] Department of Civil and Environmental Engineering, Prairie View A&M University, Prairie View, 77446, TX
[3] Department of Mechanical Engineering, Prairie View A&M University, Prairie View, 77446, TX
基金
美国国家科学基金会;
关键词
Electricity generation; Greenhouse gas emissions; Horizontal axis wind turbine; Life cycle assessment; Offshore; Onshore; Vertical axis wind turbine; Wind energy;
D O I
10.1007/s40095-016-0221-5
中图分类号
学科分类号
摘要
This study characterized and evaluated the life cycle greenhouse gas (GHG) emissions from different wind electricity generation systems by (a) performing a comprehensive review of the wind electricity generation system life cycle assessment (LCA) studies and (b) statistically evaluating the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh). A categorization index (with unique category codes, formatted as ‘axis of rotation-installed location-power generation capacity’) was adopted for use in this study to characterize the reviewed wind electricity generation systems. The unique category codes were labeled by integrating the names from the three wind power sub-classifications, i.e., the axis of rotation of the wind turbine [horizontal axis wind turbine (HAWT), vertical axis wind turbine (VAWT)], the location of the installation [onshore (ON), offshore (OFF)], and the electricity production capacity [small (S), intermediate (I), large (L)]. The characterized wind electricity generation systems were statistically evaluated to assess the reduction in life cycle GHG emissions. A total of five unique categorization codes (HAWT-ON-S, HAWT-ON-I, HAWT-ON-L, HAWT-OFF-L, VAWT-ON-S) were designated to the 29 wind electricity generation LCA studies (representing 74 wind system cases) using the proposed categorization index. The mean life cycle GHG emissions resulting from the use of HAWT-ON-S (N = 3), HAWT-ON-I (N = 4), HAWT-ON-L (N = 58), HAWT-OFF-L (N = 8), and VAWT-ON-S (N = 1) wind electricity generation systems are 38.67, 11.75, 15.98, 12.9, and 46.4 gCO2e/kWh, respectively. The HAWT-ON-I wind electricity generation systems produced the minimum life cycle GHGs than other wind electricity generation systems. © 2016, The Author(s).
引用
收藏
页码:55 / 64
页数:9
相关论文
共 50 条
  • [31] Life cycle greenhouse gas emissions from power generation in China's provinces in 2020
    Li, Xin
    Chalvatzis, Konstantinos J.
    Pappas, Dimitrios
    APPLIED ENERGY, 2018, 223 : 93 - 102
  • [32] Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa
    Cohen, Brett
    Winkler, Harald
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2014, 110 (3-4) : 31 - 35
  • [33] Ship life cycle greenhouse gas emissions
    Chatzinikolaou S.
    Ventikos N.
    Bilgili L.
    Celebi U.B.
    Chatzinikolaou, Stefanos (stefanos.chatzinikolaou@rina.org), 1600, Springer Verlag (PartF2): : 883 - 895
  • [34] Greenhouse gas emissions of electricity from hydropower
    Koehler, Jonas
    Roedl, Anne
    Kaltschmitt, Martin
    WASSERWIRTSCHAFT, 2020, 110 (05) : 41 - 45
  • [35] Assessment of Spatial and Temporal Modeling on Greenhouse Gas Emissions From Electricity Generation
    Sarhan, Ameen
    Ramachandaramurthy, Vigna K.
    Sin, Tan Ching
    Walker, Sara L.
    Salman, Bello
    Padmanaban, Sanjeevikumar
    IEEE ACCESS, 2023, 11 : 97478 - 97492
  • [36] Life cycle greenhouse gas emissions from five contrasting rice production systems in the tropics
    Dash, Pradeep K.
    Bhattacharyya, Pratap
    Padhy, Soumya R.
    Nayak, Amaresh K.
    Poonam, Annie
    Mohanty, Sangita
    PEDOSPHERE, 2023, 33 (06) : 960 - 971
  • [37] Life cycle greenhouse gas emissions from five contrasting rice production systems in the tropics
    Pradeep K.DASH
    Pratap BHATTACHARYYA
    Soumya R.PADHY
    Amaresh K.NAYAK
    Annie POONAM
    Sangita MOHANTY
    Pedosphere, 2023, (06) : 960 - 971
  • [38] Life cycle greenhouse gas emissions from five contrasting rice production systems in the tropics
    Pradeep K.DASH
    Pratap BHATTACHARYYA
    Soumya R.PADHY
    Amaresh K.NAYAK
    Annie POONAM
    Sangita MOHANTY
    Pedosphere, 2023, 33 (06) : 960 - 971
  • [39] Assessing the difference - greenhouse gas emissions of electricity generation chains
    Spadaro, Joseph V.
    Langlois, Lucille
    Hamilton, Bruce
    IAEA Bulletin, 2000, 42 (02):
  • [40] Greenhouse gas emissions from forestry operations: A life cycle assessment
    Sonne, Edie
    JOURNAL OF ENVIRONMENTAL QUALITY, 2006, 35 (04) : 1439 - 1450