Anderson’s Orthogonality Catastrophe for One-Dimensional Systems

被引:0
|
作者
Heinrich Küttler
Peter Otte
Wolfgang Spitzer
机构
[1] Mathematisches Institut,Fakultät für Mathematik
[2] LMU München,Fakultät für Mathematik und Informatik
[3] Ruhr-Universität Bochum,undefined
[4] Fernuniversität in Hagen,undefined
来源
Annales Henri Poincaré | 2014年 / 15卷
关键词
Fermi Energy; Thermodynamic Limit; Integral Formula; Spectral Projection; Spectral Shift Function;
D O I
暂无
中图分类号
学科分类号
摘要
The overlap, DN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}_N}$$\end{document}, between the ground state of N free fermions and the ground state of N fermions in an external potential in one spatial dimension is given by a generalized Gram determinant. An upper bound is DN≤exp(-IN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}_N\leq\exp(-\mathcal{I}_N)}$$\end{document} with the so-called Anderson integral IN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}_N}$$\end{document}. We prove, provided the external potential satisfies some conditions, that in the thermodynamic limit IN=γlnN+O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}_N = \gamma\ln N + O(1)}$$\end{document} as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N\to\infty}$$\end{document}. The coefficient γ > 0 is given in terms of the transmission coefficient of the one-particle scattering matrix. We obtain a similar lower bound on DN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}_N}$$\end{document} concluding that C~N-γ~≤DN≤CN-γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{C} N^{-\tilde{\gamma}} \leq \mathcal{D}_N \leq CN^{-\gamma}}$$\end{document} with constants C, C~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{C}}$$\end{document}, and γ~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{\gamma}}$$\end{document}. In particular, DN→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}_N\to 0}$$\end{document} as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N\to\infty}$$\end{document} which is known as Anderson’s orthogonality catastrophe.
引用
收藏
页码:1655 / 1696
页数:41
相关论文
共 50 条
  • [1] Anderson's Orthogonality Catastrophe for One-Dimensional Systems
    Kuettler, Heinrich
    Otte, Peter
    Spitzer, Wolfgang
    [J]. ANNALES HENRI POINCARE, 2014, 15 (09): : 1655 - 1696
  • [2] Pattern Formation in One-Dimensional Polaron Systems and Temporal Orthogonality Catastrophe
    Koutentakis, Georgios M.
    Mistakidis, Simeon, I
    Schmelcher, Peter
    [J]. ATOMS, 2022, 10 (01)
  • [3] Anderson's Orthogonality Catastrophe
    Gebert, Martin
    Kuettler, Heinrich
    Mueller, Peter
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 329 (03) : 979 - 998
  • [4] Anderson’s Orthogonality Catastrophe
    Martin Gebert
    Heinrich Küttler
    Peter Müller
    [J]. Communications in Mathematical Physics, 2014, 329 : 979 - 998
  • [5] Orthogonality catastrophe in a one-dimensional system of correlated electrons
    Meden, V
    Schmitteckert, P
    Shannon, N
    [J]. PHYSICAL REVIEW B, 1998, 57 (15) : 8878 - 8889
  • [6] Anderson orthogonality catastrophe in disordered systems
    Gefen, Y
    Berkovits, R
    Lerner, IV
    Altshuler, BL
    [J]. PHYSICAL REVIEW B, 2002, 65 (08): : 1 - 4
  • [7] Quantum Alchemy and Universal Orthogonality Catastrophe in One-Dimensional Anyons
    Mackel, Naim E.
    Yang, Jing
    del Campo, Adolfo
    [J]. QUANTUM, 2023, 7
  • [8] Anderson's orthogonality catastrophe in one dimension induced by a magnetic field
    Knoerr, Hans Konrad
    Otte, Peter
    Spitzer, Wolfgang
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (32)
  • [9] Multifractal orthogonality catastrophe in one-dimensional random quantum critical points
    Vasseur, Romain
    Moore, Joel E.
    [J]. PHYSICAL REVIEW B, 2015, 92 (05):
  • [10] ANDERSON LOCALIZATION FOR ONE-DIMENSIONAL AND QUASI-ONE-DIMENSIONAL SYSTEMS
    DELYON, F
    LEVY, Y
    SOUILLARD, B
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (3-4) : 375 - 388