Quantum Alchemy and Universal Orthogonality Catastrophe in One-Dimensional Anyons

被引:0
|
作者
Mackel, Naim E. [1 ]
Yang, Jing [1 ,2 ,3 ]
del Campo, Adolfo [1 ,4 ]
机构
[1] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[2] KTH Royal Inst Technol, Nordita, Hannes Alfvens vag 12, S-10691 Stockholm, Sweden
[3] Stockholm Univ, Hannes Alfvens vag 12, S-10691 Stockholm, Sweden
[4] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain
来源
QUANTUM | 2023年 / 7卷
关键词
FRACTIONAL-STATISTICS; IDEAL-GAS; GEOMETRY;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many-particle quantum systems with intermediate anyonic exchange statistics are supported in one spatial dimension. In this context, the anyon-anyon mapping is recast as a continuous transformation that generates shifts of the statistical parameter K. We characterize the geometry of quantum states associated with different values of K, i.e., different quantum statistics. While states in the bosonic and fermionic subspaces are always orthogonal, overlaps between anyonic states are generally finite and exhibit a universal form of the orthogonality catastrophe governed by a fundamental statistical factor, indespeed limits on the flow of K, illustrate our results with a model of hard-core anyons, and discuss possible experiments in quantum simulation.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Multifractal orthogonality catastrophe in one-dimensional random quantum critical points
    Vasseur, Romain
    Moore, Joel E.
    [J]. PHYSICAL REVIEW B, 2015, 92 (05):
  • [2] Quantum entanglement in one-dimensional anyons
    Mani, H. S.
    Ramadas, N.
    Sreedhar, V. V.
    [J]. PHYSICAL REVIEW A, 2020, 101 (02)
  • [4] Orthogonality catastrophe in a one-dimensional system of correlated electrons
    Meden, V
    Schmitteckert, P
    Shannon, N
    [J]. PHYSICAL REVIEW B, 1998, 57 (15) : 8878 - 8889
  • [5] Anderson’s Orthogonality Catastrophe for One-Dimensional Systems
    Heinrich Küttler
    Peter Otte
    Wolfgang Spitzer
    [J]. Annales Henri Poincaré, 2014, 15 : 1655 - 1696
  • [6] Anderson's Orthogonality Catastrophe for One-Dimensional Systems
    Kuettler, Heinrich
    Otte, Peter
    Spitzer, Wolfgang
    [J]. ANNALES HENRI POINCARE, 2014, 15 (09): : 1655 - 1696
  • [7] Pattern Formation in One-Dimensional Polaron Systems and Temporal Orthogonality Catastrophe
    Koutentakis, Georgios M.
    Mistakidis, Simeon, I
    Schmelcher, Peter
    [J]. ATOMS, 2022, 10 (01)
  • [8] Quantum computation from fermionic anyons on a one-dimensional lattice
    Tosta, Allan D. C.
    Brod, Daniel J.
    Galvao, Ernesto F.
    [J]. PHYSICAL REVIEW A, 2019, 99 (06)
  • [9] Quantum dynamics and correlations of indistinguishable anyons in one-dimensional lattices
    Wang Li
    Jia Li-Fang
    Zhang Yun-Bo
    [J]. ACTA PHYSICA SINICA, 2022, 71 (13)
  • [10] Quantum walks of two interacting anyons in one-dimensional optical lattices
    Wang, Limin
    Wang, Li
    Zhang, Yunbo
    [J]. PHYSICAL REVIEW A, 2014, 90 (06):