Classical paths and the WKB approximation

被引:0
|
作者
J.C. Martinez
E. Polatdemir
机构
[1] Division of Physics,
[2] National Institute of Education,undefined
[3] Nanyang Technological University,undefined
[4] 469 Bukit Timah Road,undefined
[5] Singapore 259756,undefined
[6] Singapore,undefined
关键词
Complex Time; Green Function; Integral Formalism; Quantum Tunneling; Path Integral Formalism;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, new connection formulas for the WKB method have been proposed, without justification, for quantum tunneling problems. We show that these formulas can be associated with diagrammatic rules within the complex time framework of the path integral formalism and then we express the relevant Green functions in terms of a sum of contributions coming from (easily interpreted) classical paths. The method is applied to barrier penetration and the double well.
引用
收藏
页码:195 / 201
页数:6
相关论文
共 50 条
  • [1] Classical paths and the WKB approximation
    Martinez, JC
    Polatdemir, E
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2000, 18 (01): : 195 - 201
  • [2] CLASSICAL LIMIT AND WKB APPROXIMATION
    BROWN, LS
    [J]. AMERICAN JOURNAL OF PHYSICS, 1972, 40 (03) : 371 - &
  • [3] A QUANTUM WKB APPROXIMATION WITHOUT CLASSICAL TRAJECTORIES
    MOLZAHN, FH
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (10) : 2256 - 2267
  • [4] Multidimensional WKB approximation for tunneling along curved escape paths
    Zamastil, J.
    Skala, L.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (04) : 898 - 919
  • [5] Multidimensional WKB Approximation for Tunneling Along Curved Escape Paths
    J. Zamastil
    L. Skála
    [J]. International Journal of Theoretical Physics, 2007, 46 : 898 - 919
  • [6] Schwinger's result on particle production from complex paths WKB approximation
    Biwas, S
    Shaw, A
    Modak, B
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (23): : 3717 - 3731
  • [7] Modified WKB approximation
    Bronzan, J.B.
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 1996, 54 (01):
  • [8] Quasilinear Approximation and WKB
    R. Krivec
    V. B. Mandelzweig
    F. Tabakin
    [J]. Few-Body Systems, 2004, 34 : 57 - 62
  • [9] ON THE THEORY OF WKB APPROXIMATION
    LYUBARSKY, GY
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (09): : 70 - 73
  • [10] Fractional WKB approximation
    Eqab M. Rabei
    Ibrahim M. A. Altarazi
    Sami I. Muslih
    Dumitru Baleanu
    [J]. Nonlinear Dynamics, 2009, 57 : 171 - 175