Resurgence in η-deformed Principal Chiral Models

被引:0
|
作者
Saskia Demulder
Daniele Dorigoni
Daniel C. Thompson
机构
[1] Theoretische Natuurkunde,Centre for Particle Theory & Department of Mathematical Sciences
[2] Vrije Universiteit Brussel and The International Solvay Institutes,undefined
[3] Durham University,undefined
来源
Journal of High Energy Physics | / 2016卷
关键词
Nonperturbative Effects; Sigma Models; Integrable Field Theories; Solitons Monopoles and Instantons;
D O I
暂无
中图分类号
学科分类号
摘要
We study the SU(2) Principal Chiral Model (PCM) in the presence of an integrable η-deformation. We put the theory on ℝ×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R}\times {S}^1 $$\end{document} with twisted boundary conditions and then reduce the circle to obtain an effective quantum mechanics associated with the Whittaker-Hill equation. Using resurgent analysis we study the large order behaviour of perturbation theory and recover the fracton events responsible for IR renormalons. The fractons are modified from the standard PCM due to the presence of this η-deformation but they are still the constituents of uniton-like solutions in the deformed quantum field theory. We also find novel SL2ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{S}\mathrm{L}\left(2,\mathbb{C}\right) $$\end{document} saddles, thus strengthening the conjecture that the semi-classical expansion of the path integral gives rise to a resurgent transseries once written as a sum over Lefschetz thimbles living in a complexification of the field space. We conclude by connecting our quantum mechanics to a massive deformation of the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 4-d gauge theory with gauge group SU(2) and Nf = 2.
引用
收藏
相关论文
共 50 条
  • [31] GAUGE RELATION BETWEEN SELF-INDUCED TRANSPARENCY THEORY AND PRINCIPAL CHIRAL MODELS
    MAIMISTOV, AI
    PHYSICS LETTERS A, 1990, 144 (01) : 11 - 14
  • [33] Boundary scattering in the principal chiral model
    MacKay, N
    Short, B
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2001, 51 (12) : 1380 - 1384
  • [34] Reflection factors for the principal chiral model
    Prata, JN
    PHYSICS LETTERS B, 1998, 438 (1-2) : 115 - 122
  • [35] The electronic structure of a deformed chiral carbon nanotorus
    Zhang, ZH
    Yang, ZQ
    Wang, X
    Yuan, JH
    Zhang, H
    Qiu, M
    Peng, JC
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (26) : 4111 - 4120
  • [36] LARGE-N PHASE-TRANSITION IN LATTICE 2-DIMENSIONAL PRINCIPAL CHIRAL MODELS
    CAMPOSTRINI, M
    ROSSI, P
    VICARI, E
    PHYSICAL REVIEW D, 1995, 52 (01): : 395 - 401
  • [37] Deformed Yangians and integrable models
    Kulish, PP
    Stolin, AA
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1997, 47 (12) : 1207 - 1212
  • [38] Strong integrability of λ-deformed models
    Georgiou, George
    Sfetsos, Konstantinos
    Siampos, Konstantinos
    NUCLEAR PHYSICS B, 2020, 952
  • [39] Resurgence structure to all orders of multi-bions in deformed SUSY quantum mechanics
    Fujimori, Toshiaki
    Kamata, Syo
    Misumi, Tatsuhiro
    Nitta, Muneto
    Sakai, Norisuke
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2017, 2017 (08):
  • [40] Non-principal surface waves in deformed incompressible materials
    Destrade, M
    Otténio, M
    Pichugin, AV
    Rogerson, GA
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2005, 43 (13-14) : 1092 - 1106