Resurgence in η-deformed Principal Chiral Models

被引:0
|
作者
Saskia Demulder
Daniele Dorigoni
Daniel C. Thompson
机构
[1] Theoretische Natuurkunde,Centre for Particle Theory & Department of Mathematical Sciences
[2] Vrije Universiteit Brussel and The International Solvay Institutes,undefined
[3] Durham University,undefined
来源
Journal of High Energy Physics | / 2016卷
关键词
Nonperturbative Effects; Sigma Models; Integrable Field Theories; Solitons Monopoles and Instantons;
D O I
暂无
中图分类号
学科分类号
摘要
We study the SU(2) Principal Chiral Model (PCM) in the presence of an integrable η-deformation. We put the theory on ℝ×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R}\times {S}^1 $$\end{document} with twisted boundary conditions and then reduce the circle to obtain an effective quantum mechanics associated with the Whittaker-Hill equation. Using resurgent analysis we study the large order behaviour of perturbation theory and recover the fracton events responsible for IR renormalons. The fractons are modified from the standard PCM due to the presence of this η-deformation but they are still the constituents of uniton-like solutions in the deformed quantum field theory. We also find novel SL2ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{S}\mathrm{L}\left(2,\mathbb{C}\right) $$\end{document} saddles, thus strengthening the conjecture that the semi-classical expansion of the path integral gives rise to a resurgent transseries once written as a sum over Lefschetz thimbles living in a complexification of the field space. We conclude by connecting our quantum mechanics to a massive deformation of the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 4-d gauge theory with gauge group SU(2) and Nf = 2.
引用
收藏
相关论文
共 50 条
  • [1] Resurgence in η-deformed Principal Chiral Models
    Demulder, Saskia
    Dorigoni, Daniele
    Thompson, Daniel C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07):
  • [2] Resurgence in Quantum Field Theory: Nonperturbative Effects in the Principal Chiral Model
    Cherman, Aleksey
    Dorigoni, Daniele
    Dunne, Gerald V.
    Uensal, Mithat
    PHYSICAL REVIEW LETTERS, 2014, 112 (02)
  • [3] Quantum inverse scattering and the lambda deformed principal chiral model
    Appadu, Calan
    Hollowood, Timothy J.
    Price, Dafydd
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (30)
  • [4] Universal renormalons in principal chiral models
    Bruckmann, Falk
    Puhr, Matthias
    PHYSICAL REVIEW D, 2020, 101 (03)
  • [5] Integrable generalized principal chiral models
    Phys Lett Sect B Nucl Elem Part High Energy Phys, 3-4 (374):
  • [6] Integrable generalized principal chiral models
    Sochen, N
    PHYSICS LETTERS B, 1997, 391 (3-4) : 374 - 380
  • [7] Structure of the vaccum in deformed supersymmetric chiral models
    Fernandez, P.
    Moreno, E. F.
    Schaposnik, F. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07):
  • [8] Local conserved charges in principal chiral models
    Evans, JM
    Hassan, M
    MacKay, NJ
    Mountain, AJ
    NUCLEAR PHYSICS B, 1999, 561 (03) : 385 - 412
  • [9] Local conserved charges in principal chiral models
    Mackay, NJ
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 (01) : 135 - 137
  • [10] Non-commutative principal chiral models
    Profumo, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (10):