Codimension 3 nonresonant bifurcations of homoclinic orbits with two inclination flips

被引:0
|
作者
Shuliang Shui
Deming Zhu
机构
[1] Zhejiang Normal University,College of Mathematics and Physics
[2] East China Normal University,Department of Mathematics
来源
关键词
bifurcation; homoclinic orbit; non-resonance; inclination flip; 1-periodic orbit;
D O I
暂无
中图分类号
学科分类号
摘要
Homoclinic bifurcations in four-dimensional vector fields are investigated by setting up a local coordinate near a homoclinic orbit. This homoclinic orbit is principal but its stable and unstable foliations take inclination flip. The existence, nonexistence, and uniqueness of the 1-homoclinic orbit and 1-periodic orbit are studied. The existence of the two-fold 1-periodic orbit and three-fold 1-periodic orbit are also obtained. It is indicated that the number of periodic orbits bifurcated from this kind of homoclinic orbits depends heavily on the strength of the inclination flip.
引用
收藏
页码:248 / 260
页数:12
相关论文
共 50 条
  • [21] Homoclinic orbits bifurcations of one- and two-dimensional maps
    Belykh, VN
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1169 - 1176
  • [22] Shil'Nikov homoclinic orbits in the unfolding of a codimension-3 singularity
    Ibáñez, S
    Rodríguez, JA
    [J]. EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 975 - 977
  • [23] SUBSIDIARY BIFURCATIONS NEAR BIFOCAL HOMOCLINIC ORBITS
    GLENDINNING, P
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 : 597 - 605
  • [24] Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two
    Bai, FS
    Champneys, AR
    [J]. DYNAMICS AND STABILITY OF SYSTEMS, 1996, 11 (04): : 325 - 346
  • [25] NONRESONANT BIFURCATIONS OF HETEROCLINIC LOOPS WITH ONE INCLINATION FLIP
    Shui, Shuliang
    Li, Jingjing
    Zhang, Xuyang
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (01): : 255 - 273
  • [26] Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two
    Tsinghua Univ, Beijing, China
    [J]. Dyn Stab Syst, 4 (325-346):
  • [27] Bifurcations of Orbit and Inclination Flips Heteroclinic Loop with Nonhyperbolic Equilibria
    Geng, Fengjie
    Zhao, Junfang
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [28] NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-2 HOMOCLINIC BIFURCATIONS
    CHAMPNEYS, AR
    KUZNETSOV, YA
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (04): : 785 - 822
  • [29] Codimension-Two Homoclinic Bifurcations Underlying Spike Adding in the Hindmarsh-Rose Burster
    Linaro, Daniele
    Champneys, Alan
    Desroches, Mathieu
    Storace, Marco
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (03): : 939 - 962
  • [30] Blowout bifurcations of codimension two
    Ashwin, P
    Aston, PJ
    [J]. PHYSICS LETTERS A, 1998, 244 (04) : 261 - 270