Cosmological analysis of pilgrim dark energy in loop quantum cosmology

被引:0
|
作者
Abdul Jawad
机构
[1] COMSATS Institute of Information Technology,Department of Mathematics
来源
关键词
Dark Energy; Hubble Parameter; Dark Energy Model; Cold Dark Matter; Cosmological Parameter;
D O I
暂无
中图分类号
学科分类号
摘要
The proposal of pilgrim dark energy is based on the speculation that phantom-like dark energy (with strong enough resistive force) can prevent black hole formation in the universe. We explore this phenomenon in the loop quantum cosmology framework by taking pilgrim dark energy with a Hubble horizon. We evaluate the cosmological parameters such as the Hubble parameter, the equation of state parameter, the squared speed of sound, and also cosmological planes like ωϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{\vartheta }$$\end{document}–ωϑ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega '_{\vartheta }$$\end{document} and r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}–s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} on the basis of the pilgrim dark energy parameter (u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document}) and the interacting parameter (d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^2$$\end{document}). It is found that the values of the Hubble parameter lie in the range 74-0.005+0.005\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$74^{+0.005}_{-0.005}$$\end{document}. It is mentioned here that the equation of state parameter lies within the ranges -1∓0.00005\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1 \mp 0.00005$$\end{document} for u=2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=2,~1$$\end{document} and (-1.12,-1),(-5,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1.12,-1), (-5,-1)$$\end{document} for u=-1,-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=-1,-2$$\end{document}, respectively. Also, the ωϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{\vartheta }$$\end{document}–ωϑ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega '_{\vartheta }$$\end{document} planes provide a Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM limit, and freezing and thawing regions for all cases of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document}. It is also interesting to mention here that the ωϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{\vartheta }$$\end{document}–ωϑ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega '_{\vartheta }$$\end{document} planes lie in the range (ωϑ=-1.13-0.25+0.24,ωϑ′<1.32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{\vartheta }=-1.13^{+0.24}_{-0.25},~\omega '_{\vartheta }<1.32$$\end{document}). In addition, the r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}–s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} planes also correspond to Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM for all cases of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document}. Finally, it is remarked that all the above constraints of the cosmological parameters (corresponding to u=±2,±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=\pm 2, \pm 1$$\end{document} and d2=0.2-1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^2=0.2^{+1}_{-1}$$\end{document}) show consistency with different observational data like Planck, WP, BAO, H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0$$\end{document}, SNLS, and nine-year WMAP.
引用
收藏
相关论文
共 50 条
  • [31] The Phase Space Analysis of Interacting K-Essence Dark Energy Models in Loop Quantum Cosmology
    Chen, Bohai
    Wu, Yabo
    Chi, Jianan
    Liu, Wenzhong
    Hu, Yiliang
    [J]. UNIVERSE, 2022, 8 (10)
  • [32] Generalized ghost pilgrim dark energy in F(T, TG) cosmology
    Sharif, M.
    Nazir, Kanwal
    [J]. MODERN PHYSICS LETTERS A, 2016, 31 (25)
  • [33] Analysis of pilgrim dark energy models
    Sharif, M.
    Jawad, Abdul
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2013, 73 (04): : 1 - 8
  • [34] Analysis of pilgrim dark energy models
    M. Sharif
    Abdul Jawad
    [J]. The European Physical Journal C, 2013, 73
  • [35] Quantum cosmology with symmetry analysis for quintom dark energy model
    Dutta, Sourav
    Lakshmanan, Muthusamy
    Chakraborty, Subenoy
    [J]. PHYSICS OF THE DARK UNIVERSE, 2021, 32
  • [36] Cylindrically Symmetric Generalized Ghost Pilgrim Dark Energy Cosmological Univers
    Krishna, Mandala
    Kappala, Sobhanbabu
    Santhikumar, Rajamahanthi
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2024, 17 (02): : 257 - 265
  • [37] Cosmological analysis of F((R)over-tilde) models via pilgrim dark energy
    Jawad, Abdul
    Chattopadhyay, Surajit
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2015, 357 (01)
  • [38] The Effect of a Positive Cosmological Constant on the Bounce of Loop Quantum Cosmology
    Martin-Benito, Mercedes
    Neves, Rita B.
    [J]. MATHEMATICS, 2020, 8 (02)
  • [39] Cosmological inflation driven by holonomy corrections of loop quantum cosmology
    Chiou, Dah-Wei
    Liu, Kai
    [J]. PHYSICAL REVIEW D, 2010, 81 (06)
  • [40] Dynamical Study of a Constant Viscous Dark Energy Model in Classical and Loop Quantum Cosmology
    Sara Benchikh
    Noureddine Mebarki
    Dalel Aberkane
    [J]. Chinese Physics Letters, 2016, 33 (05) : 149 - 153