Cosmological analysis of pilgrim dark energy in loop quantum cosmology

被引:0
|
作者
Abdul Jawad
机构
[1] COMSATS Institute of Information Technology,Department of Mathematics
来源
关键词
Dark Energy; Hubble Parameter; Dark Energy Model; Cold Dark Matter; Cosmological Parameter;
D O I
暂无
中图分类号
学科分类号
摘要
The proposal of pilgrim dark energy is based on the speculation that phantom-like dark energy (with strong enough resistive force) can prevent black hole formation in the universe. We explore this phenomenon in the loop quantum cosmology framework by taking pilgrim dark energy with a Hubble horizon. We evaluate the cosmological parameters such as the Hubble parameter, the equation of state parameter, the squared speed of sound, and also cosmological planes like ωϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{\vartheta }$$\end{document}–ωϑ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega '_{\vartheta }$$\end{document} and r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}–s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} on the basis of the pilgrim dark energy parameter (u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document}) and the interacting parameter (d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^2$$\end{document}). It is found that the values of the Hubble parameter lie in the range 74-0.005+0.005\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$74^{+0.005}_{-0.005}$$\end{document}. It is mentioned here that the equation of state parameter lies within the ranges -1∓0.00005\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1 \mp 0.00005$$\end{document} for u=2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=2,~1$$\end{document} and (-1.12,-1),(-5,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1.12,-1), (-5,-1)$$\end{document} for u=-1,-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=-1,-2$$\end{document}, respectively. Also, the ωϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{\vartheta }$$\end{document}–ωϑ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega '_{\vartheta }$$\end{document} planes provide a Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM limit, and freezing and thawing regions for all cases of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document}. It is also interesting to mention here that the ωϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{\vartheta }$$\end{document}–ωϑ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega '_{\vartheta }$$\end{document} planes lie in the range (ωϑ=-1.13-0.25+0.24,ωϑ′<1.32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{\vartheta }=-1.13^{+0.24}_{-0.25},~\omega '_{\vartheta }<1.32$$\end{document}). In addition, the r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}–s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} planes also correspond to Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM for all cases of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document}. Finally, it is remarked that all the above constraints of the cosmological parameters (corresponding to u=±2,±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=\pm 2, \pm 1$$\end{document} and d2=0.2-1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^2=0.2^{+1}_{-1}$$\end{document}) show consistency with different observational data like Planck, WP, BAO, H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0$$\end{document}, SNLS, and nine-year WMAP.
引用
收藏
相关论文
共 50 条
  • [1] Cosmological analysis of pilgrim dark energy in loop quantum cosmology
    Jawad, Abdul
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (05):
  • [2] Cosmological study in loop quantum cosmology through dark energy model
    Jawad, Abdul
    Rani, Shamaila
    Salako, Ines G.
    Gulshan, Faiza
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (02):
  • [3] Generalized Ghost Version of Pilgrim Dark Energy in Loop Quantum Gravity Motivated Cosmology
    Sayani Maity
    Ujjal Debnath
    [J]. Gravitation and Cosmology, 2021, 27 : 375 - 382
  • [4] Generalized Ghost Version of Pilgrim Dark Energy in Loop Quantum Gravity Motivated Cosmology
    Maity, Sayani
    Debnath, Ujjal
    [J]. GRAVITATION & COSMOLOGY, 2021, 27 (04): : 375 - 382
  • [5] Cosmological evolution of pilgrim dark energy
    Sharif, M.
    Zubair, M.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2014, 352 (01) : 263 - 272
  • [6] Cosmological evolution of pilgrim dark energy
    M. Sharif
    M. Zubair
    [J]. Astrophysics and Space Science, 2014, 352 : 263 - 272
  • [7] THERMODYNAMICAL PROPERTIES OF DARK ENERGY IN LOOP QUANTUM COSMOLOGY
    Xiao, Kui
    Zhu, Jian-Yang
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (02): : 169 - 179
  • [8] Generalized interacting dark energy model and loop quantum cosmology
    Swain, Suryakanta
    Sahu, Debasis
    Dwivedee, Debabrata
    Sahoo, Gourishankar
    Nayak, Bibekananda
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2022, 367 (06)
  • [9] DYNAMICAL BEHAVIOR OF INTERACTING DARK ENERGY IN LOOP QUANTUM COSMOLOGY
    Xiao, Kui
    Zhu, Jian-Yang
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (26): : 4993 - 5007
  • [10] Agegraphic dark energy cosmology and Quantum loop-correction
    Fazlollahi, H. R.
    [J]. PHYSICS OF THE DARK UNIVERSE, 2022, 35