Texture Development in a Friction Stir Lap-Welded AZ31B Magnesium Alloy

被引:0
|
作者
B. S. Naik
D. L. Chen
X. Cao
P. Wanjara
机构
[1] Ryerson University,Department of Mechanical and Industrial Engineering
[2] National Research Council Canada - Aerospace,undefined
关键词
Friction Stir Welding; Welding Speed; Stir Zone; Friction Stir Welding Process; Prismatic Plane;
D O I
暂无
中图分类号
学科分类号
摘要
The present study was aimed at characterizing the microstructure, texture, hardness, and tensile properties of an AZ31B-H24 Mg alloy that was friction stir lap welded (FSLWed) at varying tool rotational rates and welding speeds. Friction stir lap welding (FSLW) resulted in the presence of recrystallized grains and an associated hardness drop in the stir zone (SZ). Microstructural investigation showed that both the AZ31B-H24 Mg base metal (BM) and SZ contained β-Mg17Al12 and Al8Mn5 second phase particles. The AZ31B-H24 BM contained a type of basal texture (0001)〈112¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{2} $$\end{document}0〉 with the (0001) plane nearly parallel to the rolled sheet surface and 〈112¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{2} $$\end{document}0〉 directions aligned in the rolling direction. FSLW resulted in the formation of another type of basal texture (0001)〈101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{1} $$\end{document}0〉 in the SZ, where the basal planes (0001) became slightly tilted toward the transverse direction, and the prismatic planes (101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{1} $$\end{document}0) and pyramidal planes (101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{1} $$\end{document}1) exhibited a 30 deg + (n − 1) × 60 deg rotation (n = 1, 2, 3, …) with respect to the rolled sheet normal direction, due to the shear plastic flow near the pin surface that occurred from the intense local stirring. With increasing tool rotational rate and decreasing welding speed, the maximum intensity of the basal poles (0001) in the SZ decreased due to a higher degree of dynamic recrystallization that led to a weaker or more random texture. The tool rotational rate and welding speed had a strong effect on the failure load of FSLWed joints. A combination of relatively high welding speed (20 mm/s) and low tool rotational rate (1000 rpm) was observed to be capable of achieving a high failure load. This was attributed to the relatively small recrystallized grains and high intensity of the basal poles in the SZ arising from the low heat input as well as the presence of a small hooking defect.
引用
收藏
页码:4333 / 4349
页数:16
相关论文
共 50 条
  • [1] Texture Development in a Friction Stir Lap-Welded AZ31B Magnesium Alloy
    Naik, B. S.
    Chen, D. L.
    Cao, X.
    Wanjara, P.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (10): : 4333 - 4349
  • [2] FATIGUE OF FRICTION STIR AND GTAW WELDED AZ31B MAGNESIUM ALLOY
    Avila, J. A.
    Jaramillo, H. E.
    Franco, F.
    [J]. PROCEEDINGS OF THE ASME 31ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2012, VOL 6, 2012, : 365 - 370
  • [3] Research of Submerged Friction Stir Welded AZ31B Magnesium Alloy
    Wang Kuaishe
    Zhou Longhai
    Wu Jialei
    Wang Wen
    [J]. RARE METAL MATERIALS AND ENGINEERING, 2012, 41 (06) : 1111 - 1115
  • [4] Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy
    Afrin, N.
    Chen, D. L.
    Cao, X.
    Jahazi, M.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 472 (1-2): : 179 - 186
  • [5] Defect formation analysis of Friction Stir welded Magnesium AZ31B alloy
    Gulati, Piyush
    Shukla, Dinesh Kumar
    Gupta, Akash
    [J]. MATERIALS TODAY-PROCEEDINGS, 2017, 4 (02) : 1005 - 1012
  • [6] Microstructure Stability During Creep of Friction Stir Welded AZ31B Magnesium Alloy
    Regev, Michael
    Spigarelli, Stefano
    Cabibbo, Marcello
    [J]. JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (05):
  • [7] Investigation on ballistic behaviour of friction stir welded rolled AZ31B magnesium alloy
    Dharani Kumar, S.
    Magarajan, U.
    Kumar, Saurabh S.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2022, 236 (10) : 2058 - 2065
  • [8] Friction stir lap welding of AZ31B magnesium alloy to AISI 304 stainless steel
    Ekinci, Omer
    [J]. MATERIALS TESTING, 2024, 66 (09) : 1367 - 1378
  • [9] Additive friction stir deposition of AZ31B magnesium alloy
    Sameehan S.Joshi
    Shreyash M.Patil
    Sangram Mazumder
    Shashank Sharma
    Daniel A.Riley
    Shelden Dowden
    Rajarshi Banerjee
    Narendra B.Dahotre
    [J]. Journal of Magnesium and Alloys, 2022, 10 (09) : 2404 - 2420
  • [10] Additive friction stir deposition of AZ31B magnesium alloy
    Joshi, Sameehan S.
    Patil, Shreyash M.
    Mazumder, Sangram
    Sharma, Shashank
    Riley, Daniel A.
    Dowden, Shelden
    Banerjee, Rajarshi
    Dahotre, Narendra B.
    [J]. JOURNAL OF MAGNESIUM AND ALLOYS, 2022, 10 (09) : 2404 - 2420