Building energy performance prediction using neural networks

被引:0
|
作者
Andreas Chari
Symeon Christodoulou
机构
[1] University of Cyprus,Department of Civil and Environmental Engineering
[2] University of Cyprus,Department of Civil and Environmental Engineering
来源
Energy Efficiency | 2017年 / 10卷
关键词
Artificial neural networks (ANNs); Buildings Energy Rating (BER); Energy performance; Buildings; Prediction;
D O I
暂无
中图分类号
学科分类号
摘要
The energy in buildings is influenced by numerous factors characterized by non-linear multi-interrelationships. Consequently, the prediction of the energy performance of a building, in the presence of these factors, becomes a complex task. The work presented in this paper utilizes risk and sensitivity analysis and applies artificial neural networks (ANNs) to predict the energy performance of buildings in terms of primary energy consumption and CO2 emissions represented in the Building Energy Rating (BER) scale. Training, validation, and testing of the utilized ANN was implemented using simulation data generated from a stochastic analysis on the ‘Dwellings Energy Assessment Procedure’ (DEAP) energy model. Four alternative ANN models for varying levels of detail and accuracy are devised for fast and efficient energy performance prediction. Two fine-detailed models, one with 68 energy-related input factors and one with 34 energy-related input factors, offer quick and multi-factored estimations of the energy performance of buildings with 80 and 85% accuracy, respectively. Two low-detailed models, one with 16 and one with 8 energy-related input factors, offer less computationally intensive yet sufficiently accurate predictions with 92 and 94% accuracy, respectively.
引用
收藏
页码:1315 / 1327
页数:12
相关论文
共 50 条
  • [31] Prediction of molecular energy using deep tensor neural networks
    Li, Yan
    Min, Han-Yi
    Dong, Zi-Bing
    Yuan, Tian
    Li, Xiao-Qi
    Xu, Pei-Jun
    Li, Guo-Hui
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2018, 18 (04) : 229 - 250
  • [32] Development of a Mobile Application for Building Energy Prediction Using Performance Prediction Model
    Kim, Yu-Ri
    Kang, Hae Jin
    ENERGIES, 2016, 9 (03):
  • [33] Drilling performance prediction using general regression neural networks
    Karri, V
    INTELLIGENT PROBLEM SOLVING: METHODOLOGIES AND APPROACHES, PRODEEDINGS, 2000, 1821 : 67 - 72
  • [34] Prediction of vehicle reliability performance using artificial neural networks
    Lolas, S.
    Olatunbosun, O. A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (04) : 2360 - 2369
  • [35] Prediction of cost performance in construction projects using neural networks
    AlTabtabai, H
    Alex, AP
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 1997, 24 (02): : 227 - 240
  • [36] Performance Prediction of Solar Collectors Using Artificial Neural Networks
    Xie, Hui
    Liu, Li
    Ma, Fei
    Fan, Huifang
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL II, PROCEEDINGS, 2009, : 573 - 576
  • [37] Prediction of paste backfill performance using artificial neural networks
    Rankine, Rudd M.
    Sivakugan, Nagaratnam
    PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND GEOTECHNICAL ENGINEERING, VOLS 1-5: GEOTECHNOLOGY IN HARMONY WITH THE GLOBAL ENVIRONMENT, 2005, : 1107 - 1110
  • [38] Prediction of Froth Flotation Performance Using Convolutional Neural Networks
    Jahedsaravani, A.
    Massinaei, M.
    Zarie, M.
    MINING METALLURGY & EXPLORATION, 2023, 40 (03) : 923 - 937
  • [39] Prediction of Froth Flotation Performance Using Convolutional Neural Networks
    A. Jahedsaravani
    M. Massinaei
    M. Zarie
    Mining, Metallurgy & Exploration, 2023, 40 : 923 - 937
  • [40] Architecture performance prediction using evolutionary artificial neural networks
    Castillo, P. A.
    Mora, A. M.
    Merelo, J. J.
    Laredo, J. L. J.
    Moreto, M.
    Cazorla, F. J.
    Valero, M.
    Mckee, S. A.
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2008, 4974 : 175 - +