Ambipolar charge-transfer graphene plasmonic cavities

被引:0
|
作者
Brian S. Y. Kim
Aaron J. Sternbach
Min Sup Choi
Zhiyuan Sun
Francesco L. Ruta
Yinming Shao
Alexander S. McLeod
Lin Xiong
Yinan Dong
Ted S. Chung
Anjaly Rajendran
Song Liu
Ankur Nipane
Sang Hoon Chae
Amirali Zangiabadi
Xiaodong Xu
Andrew J. Millis
P. James Schuck
Cory. R. Dean
James C. Hone
D. N. Basov
机构
[1] Columbia University,Department of Physics
[2] Columbia University,Department of Mechanical Engineering
[3] Chungnam National University,Department of Materials Science and Engineering
[4] Columbia University,Department of Applied Physics and Applied Mathematics
[5] Columbia University,Department of Electrical Engineering
[6] Nanyang Technological University,School of Electrical and Electronics Engineering, School of Materials Science and Engineering
[7] University of Washington,Department of Physics
来源
Nature Materials | 2023年 / 22卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Plasmon polaritons in van der Waals materials hold promise for various photonics applications1–4. The deterministic imprinting of spatial patterns of high carrier density in plasmonic cavities and nanoscale circuitry can enable the realization of advanced nonlinear nanophotonic5 and strong light–matter interaction platforms6. Here we demonstrate an oxidation-activated charge transfer strategy to program ambipolar low-loss graphene plasmonic structures. By covering graphene with transition-metal dichalcogenides and subsequently oxidizing the transition-metal dichalcogenides into transition-metal oxides, we activate charge transfer rooted in the dissimilar work functions between transition-metal oxides and graphene. Nano-infrared imaging reveals ambipolar low-loss plasmon polaritons at the transition-metal-oxide/graphene interfaces. Further, by inserting dielectric van der Waals spacers, we can precisely control the electron and hole densities induced by oxidation-activated charge transfer and achieve plasmons with a near-intrinsic quality factor. Using this strategy, we imprint plasmonic cavities with laterally abrupt doping profiles with nanoscale precision and demonstrate plasmonic whispering-gallery resonators based on suspended graphene encapsulated in transition-metal oxides.
引用
收藏
页码:838 / 843
页数:5
相关论文
共 50 条
  • [1] Ambipolar charge-transfer graphene plasmonic cavities
    Kim, Brian S. Y.
    Sternbach, Aaron J.
    Choi, Min Sup
    Sun, Zhiyuan
    Ruta, Francesco L.
    Shao, Yinming
    McLeod, Alexander S.
    Xiong, Lin
    Dong, Yinan
    Chung, Ted S.
    Rajendran, Anjaly
    Liu, Song
    Nipane, Ankur
    Chae, Sang Hoon
    Zangiabadi, Amirali
    Xu, Xiaodong
    Millis, Andrew J.
    Schuck, P. James
    Dean, Cory. R.
    Hone, James C.
    Basov, D. N.
    [J]. NATURE MATERIALS, 2023, 22 (07) : 838 - +
  • [2] Charge-transfer with graphene and nanotubes
    Rao, C. N. R.
    Voggu, Rakesh
    [J]. MATERIALS TODAY, 2010, 13 (09) : 34 - 40
  • [3] Ambipolar Transistor Properties of Charge-Transfer Complexes Containing Perylene and Dicyanoquinonediimines
    Sanada, Ryo
    Yoo, Dongho
    Sato, Ryonosuke
    Iijima, Kodai
    Kawamoto, Tadashi
    Mori, Takehiko
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (19): : 12088 - 12095
  • [4] Charge-transfer insulation in twisted bilayer graphene
    Rademaker, Louk
    Mellado, Paula
    [J]. PHYSICAL REVIEW B, 2018, 98 (23)
  • [5] XPS evidence for molecular charge-transfer doping of graphene
    Choudhury, Debraj
    Das, Barun
    Sarma, D. D.
    Rao, C. N. R.
    [J]. CHEMICAL PHYSICS LETTERS, 2010, 497 (1-3) : 66 - 69
  • [6] Electronic Characterization of a Charge-Transfer Complex Monolayer on Graphene
    Kumar, Avijit
    Banerjee, Kaustuv
    Ervasti, Mikko M.
    Kezilebieke, Shawulienu
    Dvorak, Marc
    Rinke, Patrick
    Harju, Ari
    Liljeroth, Peter
    [J]. ACS NANO, 2021, 15 (06) : 9945 - 9954
  • [7] Charge-transfer chemical reactions in nanofluidic Fabry-Perot cavities
    Mauro, L.
    Caicedo, K.
    Jonusauskas, G.
    Avriller, R.
    [J]. PHYSICAL REVIEW B, 2021, 103 (16)
  • [8] CHARGE-TRANSFER COMPLEXES .10 PROFILE OF CHARGE-TRANSFER BAND OF DISSOLVED CHARGE-TRANSFER COMPLEXES
    JUNGHAHN.G
    REGENSTE.W
    [J]. ZEITSCHRIFT FUR CHEMIE, 1973, 13 (07): : 264 - 265
  • [9] 1:2 charge-transfer complexes of perylene and coronene with perylene diimide, and the ambipolar transistors
    Sato, Ryonosuke
    Yoo, Dongho
    Mori, Takehiko
    [J]. CRYSTENGCOMM, 2019, 21 (20) : 3218 - 3222
  • [10] Linear tuning of charge carriers in graphene by organic molecules and charge-transfer complexes
    Sun, J. T.
    Lu, Y. H.
    Chen, W.
    Feng, Y. P.
    Wee, A. T. S.
    [J]. PHYSICAL REVIEW B, 2010, 81 (15)