On parabolic induction on inner forms of the general linear group over a non-archimedean local field

被引:0
|
作者
Erez Lapid
Alberto Mínguez
机构
[1] Weizmann Institute of Science,Department of Mathematics
[2] Université Paris 6,Institut de Mathématiques de Jussieu
来源
Selecta Mathematica | 2016年 / 22卷
关键词
22E50 (Primary);
D O I
暂无
中图分类号
学科分类号
摘要
We give new criteria for the irreducibility of parabolic induction on the general linear group and its inner forms over a local non-archimedean field. In particular, we give a necessary and sufficient condition when the inducing data is of the form π⊗σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \otimes \sigma $$\end{document} where π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} is a ladder representation and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is an arbitrary irreducible representation. As an application we simplify the proof of the classification of the unitary dual.
引用
收藏
页码:2347 / 2400
页数:53
相关论文
共 50 条