Local newforms for the general linear groups over a non-archimedean local field

被引:2
|
作者
Atobe, Hiraku [1 ]
Kondo, Satoshi [2 ,3 ]
Yasuda, Seidai [4 ]
机构
[1] Hokkaido Univ, Dept Math, Kita 10,Nishi 8,Kita Ku, Sapporo, Hokkaido 0600810, Japan
[2] Middle East Tech Univ, Northern Cyprus Campus, Guzelyurt 10, Mersin, Turkey
[3] Univ Tokyo, Kavli Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[4] Hokkaido Univ, Dept Math, Kita 10,Nishi 8,Kita Ku, Sapporo, Hokkaido 0600810, Japan
来源
FORUM OF MATHEMATICS PI | 2022年 / 10卷
关键词
INDUCED REPRESENTATIONS; SUPERCUSPIDAL REPRESENTATIONS; PARABOLIC INDUCTION; EPSILON FACTORS; CONDUCTORS;
D O I
10.1017/fmp.2022.17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [14], Jacquet-Piatetskii-Shapiro-Shalika defined a family of compact open subgroups of p-adic general linear groups indexed by nonnegative integers and established the theory of local newforms for irreducible generic representations. In this paper, we extend their results to all irreducible representations. To do this, we define a new family of compact open subgroups indexed by certain tuples of nonnegative integers. For the proof, we introduce the Rankin-Selberg integrals for Speh representations.
引用
收藏
页数:56
相关论文
共 50 条