Numerical Simulation of Turbulent Fluid Flow in Rough Rock Fracture: 2D Case

被引:0
|
作者
M. Finenko
H. Konietzky
机构
[1] Geotechnical Institute,
[2] TU Bergakademie Freiberg,undefined
来源
关键词
Laminar flow; Turbulent flow; Fracture permeability; Rough-walled rock fracture;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate both laminar and turbulent flow regimes in a rough-walled rock fracture via numerical CFD simulations. While previous studies were limited to either fully viscous Darcy or inertial Forchheimer laminar flow regimes, we chose to cover the widest possible Reynolds number range of 0.1–106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^6$$\end{document}. We introduce CFD simulation of a turbulent flow for rough-walled fractures, implementing RANS approach to turbulence modeling. We focus on 2D fracture geometries and implement changes in both shear displacement and wall roughness, systematically examining their effect on fracture permeability and friction factor in a manner similar to the fundamental studies of the flow in rough-walled pipes. For a curvilinear fracture, laminar flow becomes non-stationary between Re∼102\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re \, {\sim } \, 10^2$$\end{document}–103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^3$$\end{document}, earlier for larger shear displacement and wall roughness. Laminar–turbulent transition starting at Recr∼2300\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_{\textrm{cr}} \, {\sim } \, 2300$$\end{document} may lead to a sharp drop in permeability depending on the fracture geometry; this gap vanishes for larger shear displacement and wall roughness. Depending on the fracture geometry, bottlenecks closing with shear become a major negative factor for the overall permeability.
引用
收藏
页码:451 / 479
页数:28
相关论文
共 50 条
  • [31] Numerical simulation of flow separation over a 2D blunt body
    Tan, FS
    Weng, PF
    Xia, N
    Dai, SQ
    [J]. 3RD INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 1998, : 543 - 547
  • [32] Numerical simulation of 2D granular flow entrainment using DEM
    Chao Kang
    Dave Chan
    [J]. Granular Matter, 2018, 20
  • [33] NUMERICAL SIMULATION OF VENTILATED CAVITATING FLOW AROUND A 2D FOIL
    Chen Xin
    Lu Chuan-jing
    [J]. JOURNAL OF HYDRODYNAMICS, 2005, 17 (05) : 607 - 614
  • [34] NUMERICAL SIMULATION OF VENTILATED CAVITATING FLOW AROUND A 2D FOIL
    CHEN Xin
    [J]. Journal of Hydrodynamics, 2005, (05) : 91 - 98
  • [35] 2D numerical simulation of slow flow past circular cylinders
    Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
    不详
    [J]. Theor. Appl. Mech. Japan, 2008, (273-283):
  • [36] Turbulent Fluid Flow over Aerodynamically Rough Surfaces Using Direct Numerical Simulations
    Thakkar, M.
    Busse, A.
    Sandham, N. D.
    [J]. DIRECT AND LARGE-EDDY SIMULATION X, 2018, 24 : 281 - 287
  • [37] Numerical simulation of (T 2, T 1) 2D NMR and fluid responses
    Tan Mao-Jin
    Zou You-Long
    Zhang Jin-Yan
    Zhao Xin
    [J]. APPLIED GEOPHYSICS, 2012, 9 (04) : 401 - 413
  • [38] NUMERICAL STUDY OF THE TURBULENT-FLOW OVER AND IN A MODEL FOREST ON A 2D HILL
    KOBAYASHI, MH
    PEREIRA, JCF
    SIQUEIRA, MBB
    [J]. JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1994, 53 (03) : 357 - 374
  • [39] Numerical simulation of the transition of a Newtonian fluid to a viscoplastic state in a turbulent flow
    Pakhomov, Maksim A.
    Zhapbasbayev, Uzak K.
    Bossinov, Daniyar Zh.
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2023, 35 (02)
  • [40] Numerical prediction of turbulent flow past a 2D surface-mounted rib
    Liu, Baicang
    Ma, Jun
    Huang, Shehua
    Qian, Zhongdong
    Chen, Wenxue
    [J]. Yingyong Jichu yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering, 2008, 16 (06): : 879 - 890