A New Lower Bound For A Ramsey-Type Problem

被引:0
|
作者
Benny Sudakov*
机构
[1] Princeton University and Institute for Advanced Study,Department of Mathematics
来源
Combinatorica | 2005年 / 25卷
关键词
05C35; 05C55; 05D10;
D O I
暂无
中图分类号
学科分类号
摘要
Let 3 ≤ r < s be fixed integers and let G be a graph on n vertices not containing a complete graph on s vertices. The main aim of this paper is to provide a new lower bound on the size of the maximum subset of G without a copy of complete graph Kr. Our results substantially improve previous bounds of Krivelevich and Bollobás and Hind.
引用
收藏
页码:487 / 498
页数:11
相关论文
共 50 条
  • [21] On metric Ramsey-type dichotomies
    Bartal, Y
    Linial, N
    Mendel, M
    Naor, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 71 : 289 - 303
  • [22] A Ramsey-type result for the hypercube
    Alon, Noga
    Radoicic, Rados
    Sudakov, Benny
    Vondrak, Jan
    JOURNAL OF GRAPH THEORY, 2006, 53 (03) : 196 - 208
  • [23] SOME RAMSEY-TYPE THEOREMS
    ERDOS, P
    GALVIN, F
    DISCRETE MATHEMATICS, 1991, 87 (03) : 261 - 269
  • [24] AN UNPROVABLE RAMSEY-TYPE THEOREM
    LOEBL, M
    NESETRIL, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (03) : 819 - 824
  • [25] Induced Ramsey-type theorems
    Fox, Jacob
    Sudakov, Benny
    ADVANCES IN MATHEMATICS, 2008, 219 (06) : 1771 - 1800
  • [26] On Ramsey-Type Positional Games
    Nesetril, Jaroslav
    Valla, Tomas
    JOURNAL OF GRAPH THEORY, 2010, 64 (04) : 343 - 354
  • [27] Ramsey-type subrecoil cooling
    Sander, F
    Devolder, T
    Esslinger, T
    Hansch, TW
    PHYSICAL REVIEW LETTERS, 1997, 78 (21) : 4023 - 4026
  • [28] REGRESSIONS AND MONOTONE CHAINS - A RAMSEY-TYPE EXTREMAL PROBLEM FOR PARTIAL ORDERS
    WEST, DB
    TROTTER, WT
    PECK, GW
    SHOR, P
    COMBINATORICA, 1984, 4 (01) : 117 - 119
  • [29] Ramsey-type constructions for arrangements of segments
    Kyncl, Jan
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (03) : 336 - 339
  • [30] Ramsey-type theorem for spatial graphs
    Negami, S
    GRAPHS AND COMBINATORICS, 1998, 14 (01) : 75 - 80