Efficient Estimation of Spectral Functionals for Continuous-Time Stationary Models

被引:0
|
作者
Mamikon S. Ginovyan
机构
[1] Boston University,Department of Mathematics and Statistics
来源
关键词
Efficient nonparametric estimation; Spectral functionals; Continuous-time stationary process; Spectral density; Singularities; Local asymptotic normality (LAN); Asymptotic bounds; 62G05; 62G20; 62M15; 60G10;
D O I
暂无
中图分类号
学科分类号
摘要
The paper considers a problem of construction of asymptotically efficient estimators for functionals defined on a class of spectral densities, and bounding the minimax mean square risks. We define the concepts of H- and IK-efficiency of estimators, based on the variants of Hájek-Ibragimov-Khas’minskii convolution theorem and Hájek-Le Cam local asymptotic minimax theorem, respectively, and show that the simple “plug-in” statistic Φ(IT), where IT=IT(λ) is the periodogram of the underlying stationary Gaussian process X(t) with an unknown spectral density θ(λ), λ∈ℝ, is H- and IK-asymptotically efficient estimator for a linear functional Φ(θ), while for a nonlinear smooth functional Φ(θ) an H- and IK-asymptotically efficient estimator is the statistic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi(\widehat{\theta}_{T})$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{\theta}_{T}$\end{document} is a suitable sequence of the so-called “undersmoothed” kernel estimators of the unknown spectral density θ(λ). Exact asymptotic bounds for minimax mean square risks of estimators of linear functionals are also obtained.
引用
收藏
页码:233 / 254
页数:21
相关论文
共 50 条