Efficient Estimation of Spectral Functionals for Continuous-Time Stationary Models

被引:10
|
作者
Ginovyan, Mamikon S. [1 ]
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Efficient nonparametric estimation; Spectral functionals; Continuous-time stationary process; Spectral density; Singularities; Local asymptotic normality (LAN); Asymptotic bounds; NONPARAMETRIC-ESTIMATION; DENSITY; DISTRIBUTIONS; SERIES;
D O I
10.1007/s10440-011-9617-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper considers a problem of construction of asymptotically efficient estimators for functionals defined on a class of spectral densities, and bounding the minimax mean square risks. We define the concepts of H- and IK-efficiency of estimators, based on the variants of Hajek-Ibragimov-Khas'minskii convolution theorem and Hajek-Le Cam local asymptotic minimax theorem, respectively, and show that the simple "plug-in" statistic Phi(I(T)), where I(T) = I(T)(lambda) is the periodogram of the underlying stationary Gaussian process X(t) with an unknown spectral density theta(lambda), lambda is an element of R, is H- and IK-asymptotically efficient estimator for a linear functional Phi(theta), while for a nonlinear smooth functional Phi(theta) an H- and IK-asymptotically efficient estimator is the statistic Phi((theta) over capT), where (theta) over capT is a suitable sequence of the so-called "undersmoothed" kernel estimators of the unknown spectral density theta(lambda). Exact asymptotic bounds for minimax mean square risks of estimators of linear functionals are also obtained.
引用
收藏
页码:233 / 254
页数:22
相关论文
共 50 条