Fundamental aspects to localize self-catalyzed III-V nanowires on silicon

被引:0
|
作者
J. Vukajlovic-Plestina
W. Kim
L. Ghisalberti
G. Varnavides
G. Tütüncuoglu
H. Potts
M. Friedl
L. Güniat
W. C. Carter
V. G. Dubrovskii
A. Fontcuberta i Morral
机构
[1] EPFL,Laboratory of Semiconductor Materials, Institute of Materials
[2] MIT,Departments of Materials Science and Engineering
[3] ITMO University,Institute of Physics
[4] EPFL,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
III-V semiconductor nanowires deterministically placed on top of silicon electronic platform would open many avenues in silicon-based photonics, quantum technologies and energy harvesting. For this to become a reality, gold-free site-selected growth is necessary. Here, we propose a mechanism which gives a clear route for maximizing the nanowire yield in the self-catalyzed growth fashion. It is widely accepted that growth of nanowires occurs on a layer-by-layer basis, starting at the triple-phase line. Contrary to common understanding, we find that vertical growth of nanowires starts at the oxide-substrate line interface, forming a ring-like structure several layers thick. This is granted by optimizing the diameter/height aspect ratio and cylindrical symmetry of holes, which impacts the diffusion flux of the group V element through the well-positioned group III droplet. This work provides clear grounds for realistic integration of III-Vs on silicon and for the organized growth of nanowires in other material systems.
引用
收藏
相关论文
共 50 条
  • [41] Passivation of III-V Nanowires for Optoelectronics
    LaPierre, R. R.
    Chia, A. C. E.
    Haapamaki, C. M.
    Tajik, N.
    Li, Y.
    Zhao, S.
    Mi, Z.
    NANOSCALE LUMINESCENT MATERIALS 2, 2012, 45 (05): : 51 - 60
  • [42] Synthesis and Applications of III-V Nanowires
    Barrigon, Enrique
    Heurlin, Magnus
    Bi, Zhaoxia
    Monemar, Bo
    Samuelson, Lars
    CHEMICAL REVIEWS, 2019, 119 (15) : 9170 - 9220
  • [43] III-V Nanowires for Optoelectronic Applications
    Tan, H. H.
    Jiang, N.
    Lee, Y. H.
    Saxena, D.
    Parkinson, P.
    Gao, Q.
    Fu, L.
    Jagadish, C.
    2012 5TH INTERNATIONAL CONFERENCE ON COMPUTERS AND DEVICES FOR COMMUNICATION (CODEC), 2012,
  • [44] III-V Compound Semiconductor Nanowires
    Joyce, H. J.
    Paiman, S.
    Gao, Q.
    Tan, H. H.
    Kim, Y.
    Smith, L. M.
    Jackson, H. E.
    Yarrison-Rice, J. M.
    Zhang, X.
    Zou, J.
    Jagadish, C.
    2009 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE, 2009, : 59 - +
  • [45] III-V nanowires for logics and beyond
    Wernersson, Lars-Erik
    MICROELECTRONIC ENGINEERING, 2015, 147 : 344 - 348
  • [46] Recipes for crystal phase design in Au-catalyzed III-V nanowires
    Dubrovskii, Vladimir G.
    Grecenkov, Jurij
    1ST INTERNATIONAL SCHOOL AND CONFERENCE SAINT-PETERSBURG OPEN 2014 ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES, 2014, 541
  • [47] Self-Catalyzed InSb/InAs Quantum Dot Nanowires
    Arif, Omer
    Zannier, Valentina
    Rossi, Francesca
    Ercolani, Daniele
    Beltram, Fabio
    Sorba, Lucia
    NANOMATERIALS, 2021, 11 (01) : 1 - 13
  • [48] Examination of Self-Catalyzed III–V Nanowire Growth by Monte Carlo Simulation
    A. G. Nastovjak
    A. G. Usenkova
    N. L. Shwartz
    I. G. Neizvestny
    Semiconductors, 2019, 53 : 2106 - 2109
  • [49] Arsenic Pathways in Self-Catalyzed Growth of GaAs Nanowires
    Ramdani, Mohammed Reda
    Harmand, Jean Christophe
    Glas, Frank
    Patriarche, Gilles
    Travers, Laurent
    CRYSTAL GROWTH & DESIGN, 2013, 13 (01) : 91 - 96
  • [50] Misorientation defects in coalesced self-catalyzed GaN nanowires
    Grossklaus, K. A.
    Banerjee, A.
    Jahangir, S.
    Bhattacharya, P.
    Millunchick, J. M.
    JOURNAL OF CRYSTAL GROWTH, 2013, 371 : 142 - 147