Von Neumann Algebras and Hilbert Quantales

被引:0
|
作者
J. Wick Pelletier
机构
[1] York University,Department of Mathematics and Statistics
关键词
quantales; von Neumann algebras; Hilbert quantales;
D O I
10.1023/A:1008605720422
中图分类号
学科分类号
摘要
When A is a von Neumann algebra, the set of all weakly closed linear subspaces forms a Gelfand quantale, Maxw A. We prove that Maxw A is a von Neumann quantale for all von Neumann algebras A. The natural morphism from Maxw A to the Hilbert quantale on the lattice of weakly closed right ideals of A is, in general, not an isomorphism. However, when A is a von Neumann factor, its restriction to right-sided elements is an isomorphism and this leads to a new characterization of von Neumann factors.
引用
收藏
页码:249 / 264
页数:15
相关论文
共 50 条
  • [21] On cleanness of von Neumann algebras
    Cui, Lu
    Huang, Linzhe
    Wu, Wenming
    Yuan, Wei
    Zhang, Hanbin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 509 (02)
  • [22] Graph von Neumann algebras
    Cho, Ilwoo
    ACTA APPLICANDAE MATHEMATICAE, 2007, 95 (02) : 95 - 134
  • [23] Central sequence algebras of von Neumann algebras
    Fang, JS
    Ge, LM
    Li, WH
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (01): : 187 - 200
  • [24] Lipschitz algebras and derivations of von Neumann algebras
    Weaver, N
    JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 139 (02) : 261 - 300
  • [25] ON ACTION OF LAU ALGEBRAS ON VON NEUMANN ALGEBRAS
    Ramezanpour, Mohammad
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 557 - 570
  • [26] Maximal von Neumann subalgebras in type I von Neumann algebras
    Zhou, Xiaoyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 532 (02)
  • [27] Hilbert Modules and von Neumann Dimension
    Kammeyer, Holger
    INTRODUCTION TO L2-INVARIANTS, 2019, 2247 : 9 - 33
  • [28] C* algebras associated with von Neumann algebras.
    Ceccherini-Silberstein, TG
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2B (01): : 231 - 238
  • [29] A duality for endomorphisms of von Neumann algebras
    Jorgensen, PET
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (03) : 1521 - 1538
  • [30] Infinite Measures on von Neumann Algebras
    Goldstein, Stanislaw
    Paszkiewicz, Adam
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (12) : 4341 - 4348