On the Non-uniqueness Problem of the Covariant Dirac Theory and the Spin-Rotation Coupling

被引:0
|
作者
Mayeul Arminjon
机构
[1] CNRS and Universités de Grenoble: UJF,Laboratory “Soils, Solids, Structures, Risks”, 3SR
[2] Grenoble-INP,undefined
关键词
Dirac Hamiltonian; Curved spacetime; Unitary transformation; Rotating frame;
D O I
暂无
中图分类号
学科分类号
摘要
Gorbatenko and Neznamov [arXiv:1301.7599, 2013] recently claimed the absence of the title problem. In this paper, the reason for that problem is reexplained by using the notions of a unitary transformation and of the mean value of an operator, invoked by them. Their arguments actually aim at proving the uniqueness of a particular prescription for solving this problem. But that prescription is again shown non-unique. Two Hamiltonians in the same reference frame in a Minkowski spacetime, only one of them including the spin-rotation coupling term, are proved to be physically non-equivalent. This confirms that the reality of that coupling should be checked experimentally.
引用
收藏
页码:4032 / 4044
页数:12
相关论文
共 50 条
  • [41] NON-UNIQUENESS OF SOLUTION TO A GENERALIZED DIRICHLET PROBLEM
    KOH, EL
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (04): : 605 - 606
  • [42] Uniqueness and non-uniqueness for a system of heat equations with nonlinear coupling at the boundary
    Cortazar, C
    Elgueta, M
    Rossi, JD
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (02) : 257 - 267
  • [43] On the non-uniqueness of solution in surface elasticity theory
    Zhu, J.
    Ru, C. Q.
    Chen, W. Q.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2012, 17 (04) : 329 - 337
  • [44] ON SOLUTION NON-UNIQUENESS IN THE NONLINEAR ELASTICITY THEORY
    Kulikovskii, A. G.
    Chugainova, A. P.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2009, 19 (1-2) : 93 - 97
  • [45] A NOTE ON NON-UNIQUENESS IN LINEAR ELASTICITY THEORY
    EDELSTEIN, WS
    FOSDICK, RL
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (06): : 906 - +
  • [46] Uniqueness and non-uniqueness for spin-glass ground states on trees
    Baeumler, Johannes
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [47] On solution non-uniqueness in the nonlinear elasticity theory
    Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina St. 8, Moscow 119991, Russia
    Rev. Adv. Mater. Sci., 2009, 1-2 (93-97):
  • [48] NON-UNIQUENESS AND UNIQUENESS IN CAUCHY-PROBLEM AT SIMPLE CHARACTERISTIC POINTS
    PERSSON, J
    MATHEMATISCHE ANNALEN, 1973, 203 (03) : 231 - 238
  • [49] Spin-rotation coupling in muon g-2 experiments
    Papini, G
    Lambiase, G
    PHYSICS LETTERS A, 2002, 294 (3-4) : 175 - 178
  • [50] Gravitomagnetic field and time-dependent spin-rotation coupling
    Shen, JQ
    Zhu, HY
    Shi, SL
    Li, J
    PHYSICA SCRIPTA, 2002, 65 (06) : 465 - 468