Spatial designs and properties of spatial correlation: Effects on covariance estimation

被引:0
|
作者
Kathryn M. Irvine
Alix I. Gitelman
Jennifer A. Hoeting
机构
[1] Montana State University,Department of Mathematical Sciences
[2] Oregon State University,Department of Statistics
[3] Colorado State University,Department of Statistics
关键词
Effective range; Exponential covariance; In-fill asymptotics; Nugget-to-sill ratio;
D O I
暂无
中图分类号
学科分类号
摘要
In a spatial regression context, scientists are often interested in a physical interpretation of components of the parametric covariance function. For example, spatial covariance parameter estimates in ecological settings have been interpreted to describe spatial heterogeneity or “patchiness” in a landscape that cannot be explained by measured covariates. In this article, we investigate the influence of the strength of spatial dependence on maximum likelihood (ML) and restricted maximum likelihood (REML) estimates of covariance parameters in an exponential-with-nugget model, and we also examine these influences under different sampling designs—specifically, lattice designs and more realistic random and cluster designs—at differing intensities of sampling (n=144 and 361). We find that neither ML nor REML estimates perform well when the range parameter and/or the nugget-to-sill ratio is large—ML tends to underestimate the autocorrelation function and REML produces highly variable estimates of the autocorrelation function. The best estimates of both the covariance parameters and the autocorrelation function come under the cluster sampling design and large sample sizes. As a motivating example, we consider a spatial model for stream sulfate concentration.
引用
收藏
页码:450 / 469
页数:19
相关论文
共 50 条
  • [1] Spatial designs and properties of spatial correlation: Effects on covarance estimation
    Irvine, Kathryn M.
    Gitelman, Alix I.
    Hoeting, Jennifer A.
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2007, 12 (04) : 450 - 469
  • [2] Covariance estimation under spatial dependence
    Furrer, R
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 94 (02) : 366 - 381
  • [3] Estimation of nonstationary spatial covariance structure
    Nott, DJ
    Dunsmuir, WTM
    [J]. BIOMETRIKA, 2002, 89 (04) : 819 - 829
  • [4] Spatial correlation transformation based on minimum covariance
    Su, Tengrong
    Wu, Ji
    Wang, Zuoying
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 4697 - 4700
  • [5] Maximum likelihood estimation of spatial covariance parameters
    Pardo-Iguzquiza, E
    [J]. MATHEMATICAL GEOLOGY, 1998, 30 (01): : 95 - 108
  • [6] Nonparametric spatial covariance functions: Estimation and testing
    Bjornstad, ON
    Falck, W
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2001, 8 (01) : 53 - 70
  • [7] Stability analysis in nonstationary spatial covariance estimation
    J. Fernando Vera
    José M. Angulo
    Juan A. Roldán
    [J]. Stochastic Environmental Research and Risk Assessment, 2017, 31 : 815 - 828
  • [8] Stability analysis in nonstationary spatial covariance estimation
    Fernando Vera, J.
    Angulo, Jose M.
    Roldan, Juan A.
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (03) : 815 - 828
  • [9] Asymptotics for REML estimation of spatial covariance parameters
    Cressie, N
    Lahiri, SN
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 50 (03) : 327 - 341
  • [10] Asymptotics for REML estimation of spatial covariance parameters
    Cressie, N.
    Lahiri, S. N.
    [J]. Journal of Statistical Planning and Inference, 50 (03):