Covariance estimation under spatial dependence

被引:3
|
作者
Furrer, R [1 ]
机构
[1] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Geophys Stat Project, Boulder, CO 80307 USA
关键词
covariance estimation; bias; increasing-domain asymptotics; infill asymptotics; principal components;
D O I
10.1016/j.jmva.2004.05.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Correlated multivariate processes have a dependence structure which must be taken into account when estimating the covariance matrix. The natural estimator of the covariance matrix is introduced and is shown that to be biased under the dependence structure. This bias is studied under two different asymptotic models. namely increasing the domain by increasing the number of observations, and increasing the number of observations in the fixed domain. Using the first asymptotic model, we quantify the convergence rate of the bias and of the covariance between the components of the estimated covariance matrix. The second asymptotic model serves to derive a fast and accurate bias correction. As shown, under mild hypotheses, the asymptotic normality of the estimated covariance matrix holds and can be used to test whether the bias is significant, for example, in the sense that the eigenvectors of the estimated and true covariance matrices are significantly different. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:366 / 381
页数:16
相关论文
共 50 条
  • [1] Estimation of nonstationary spatial covariance structure
    Nott, DJ
    Dunsmuir, WTM
    BIOMETRIKA, 2002, 89 (04) : 819 - 829
  • [2] Spatial designs and properties of spatial correlation: Effects on covariance estimation
    Kathryn M. Irvine
    Alix I. Gitelman
    Jennifer A. Hoeting
    Journal of Agricultural, Biological, and Environmental Statistics, 2007, 12 : 450 - 469
  • [3] Maximum likelihood estimation of spatial covariance parameters
    Pardo-Iguzquiza, E
    MATHEMATICAL GEOLOGY, 1998, 30 (01): : 95 - 108
  • [4] Nonparametric spatial covariance functions: Estimation and testing
    Bjornstad, ON
    Falck, W
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2001, 8 (01) : 53 - 70
  • [5] Stability analysis in nonstationary spatial covariance estimation
    J. Fernando Vera
    José M. Angulo
    Juan A. Roldán
    Stochastic Environmental Research and Risk Assessment, 2017, 31 : 815 - 828
  • [6] Stability analysis in nonstationary spatial covariance estimation
    Fernando Vera, J.
    Angulo, Jose M.
    Roldan, Juan A.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (03) : 815 - 828
  • [7] Asymptotics for REML estimation of spatial covariance parameters
    Cressie, N
    Lahiri, SN
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 50 (03) : 327 - 341
  • [8] Asymptotics for REML estimation of spatial covariance parameters
    Cressie, N.
    Lahiri, S. N.
    Journal of Statistical Planning and Inference, 50 (03):
  • [9] Maximum Likelihood Estimation of Spatial Covariance Parameters
    Eulogio Pardo-Igúzquiza
    Mathematical Geology, 1998, 30 : 95 - 108
  • [10] Nonparametric spatial covariance functions: Estimation and testing
    Ottar N. BjØrnstad
    Wilhelm Falck
    Environmental and Ecological Statistics, 2001, 8 : 53 - 70