Structure of Relatively Biexact Group von Neumann Algebras

被引:0
|
作者
Ding, Changying [1 ]
Elayavalli, Srivatsav Kunnawalkam [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Inst Pure & Appl Math, 460 Portola Plaza, Los Angeles, CA 90095 USA
关键词
MAXIMAL AMENABILITY; OPERATOR MODULES; II1; FACTORS; SUBALGEBRAS; RIGIDITY; ABSORPTION;
D O I
10.1007/s00220-024-04987-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using computations in the bidual of B(L2M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}(L<^>2M)$$\end{document} we develop a new technique at the von Neumann algebra level to upgrade relative proper proximality to full proper proximality. This is used to structurally classify subalgebras of L Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\Gamma $$\end{document} where Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is an infinite group that is biexact relative to a finite family of subgroups {Lambda i}i is an element of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\Lambda _i\}_{i\in I}$$\end{document} such that each Lambda i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _i$$\end{document} is almost malnormal in Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. This generalizes the result of Ding et al. (Properly proximal von Neumann algebras, 2022. arXiv:2204.00517) which classifies subalgebras of von Neumann algebras of biexact groups. By developing a combination with techniques from Popa's deformation-rigidity theory we obtain a new structural absorption theorem for free products and a generalized Kurosh type theorem in the setting of properly proximal von Neumann algebras.
引用
收藏
页数:19
相关论文
共 50 条