Using computations in the bidual of B(L2M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}(L<^>2M)$$\end{document} we develop a new technique at the von Neumann algebra level to upgrade relative proper proximality to full proper proximality. This is used to structurally classify subalgebras of L Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\Gamma $$\end{document} where Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is an infinite group that is biexact relative to a finite family of subgroups {Lambda i}i is an element of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\Lambda _i\}_{i\in I}$$\end{document} such that each Lambda i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _i$$\end{document} is almost malnormal in Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. This generalizes the result of Ding et al. (Properly proximal von Neumann algebras, 2022. arXiv:2204.00517) which classifies subalgebras of von Neumann algebras of biexact groups. By developing a combination with techniques from Popa's deformation-rigidity theory we obtain a new structural absorption theorem for free products and a generalized Kurosh type theorem in the setting of properly proximal von Neumann algebras.
机构:
U Illinois Urbana Champaign, Dept Math, 1409 W Green St, Urbana, IL USAU Illinois Urbana Champaign, Dept Math, 1409 W Green St, Urbana, IL USA
JUNGE, M. A. R. I. U. S.
PALAZUELOS, C. A. R. L. O. S.
论文数: 0引用数: 0
h-index: 0
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid, SpainU Illinois Urbana Champaign, Dept Math, 1409 W Green St, Urbana, IL USA
PALAZUELOS, C. A. R. L. O. S.
PARCET, J. A. V. I. E. R.
论文数: 0引用数: 0
h-index: 0
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid, SpainU Illinois Urbana Champaign, Dept Math, 1409 W Green St, Urbana, IL USA
PARCET, J. A. V. I. E. R.
PERRIN, M. A. T. H. I. L. D. E.
论文数: 0引用数: 0
h-index: 0
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid, SpainU Illinois Urbana Champaign, Dept Math, 1409 W Green St, Urbana, IL USA