Structure of Relatively Biexact Group von Neumann Algebras

被引:0
|
作者
Ding, Changying [1 ]
Elayavalli, Srivatsav Kunnawalkam [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Inst Pure & Appl Math, 460 Portola Plaza, Los Angeles, CA 90095 USA
关键词
MAXIMAL AMENABILITY; OPERATOR MODULES; II1; FACTORS; SUBALGEBRAS; RIGIDITY; ABSORPTION;
D O I
10.1007/s00220-024-04987-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using computations in the bidual of B(L2M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}(L<^>2M)$$\end{document} we develop a new technique at the von Neumann algebra level to upgrade relative proper proximality to full proper proximality. This is used to structurally classify subalgebras of L Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\Gamma $$\end{document} where Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is an infinite group that is biexact relative to a finite family of subgroups {Lambda i}i is an element of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\Lambda _i\}_{i\in I}$$\end{document} such that each Lambda i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _i$$\end{document} is almost malnormal in Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. This generalizes the result of Ding et al. (Properly proximal von Neumann algebras, 2022. arXiv:2204.00517) which classifies subalgebras of von Neumann algebras of biexact groups. By developing a combination with techniques from Popa's deformation-rigidity theory we obtain a new structural absorption theorem for free products and a generalized Kurosh type theorem in the setting of properly proximal von Neumann algebras.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Hypercontractivity in group von Neumann algebras
    JUNGE, M. A. R. I. U. S.
    PALAZUELOS, C. A. R. L. O. S.
    PARCET, J. A. V. I. E. R.
    PERRIN, M. A. T. H. I. L. D. E.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 249 (1183) : VII - +
  • [2] Homology of group von Neumann algebras
    Mattox, Wade
    MUENSTER JOURNAL OF MATHEMATICS, 2016, 9 (01): : 77 - 91
  • [3] GLOBAL STRUCTURE IN VON NEUMANN ALGEBRAS
    EFFROS, EG
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (02) : 434 - &
  • [4] States and structure of von Neumann Algebras
    Hamhalter, J
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (7-8) : 1561 - 1571
  • [5] States and structure of von Neumann algebras
    Hamhalter, J
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (10) : 2101 - 2111
  • [6] States and Structure of von Neumann Algebras
    Jan Hamhalter
    International Journal of Theoretical Physics, 2004, 43 : 2101 - 2111
  • [7] States and Structure of von Neumann Algebras
    Jan Hamhalter
    International Journal of Theoretical Physics, 2004, 43 : 1561 - 1571
  • [8] Fourier multipliers and group von Neumann algebras
    Akylzhanov, Rauan
    Ruzhansky, Michael
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (08) : 766 - 770
  • [9] On the amenable subalgebras of group von Neumann algebras
    Amrutam, Tattwamasi
    Hartman, Yair
    Oppelmayer, Hanna
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (02)
  • [10] Group amenabililty properties for von Neumann algebras
    Lau, Anthony T.
    Paterson, Alan L. T.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (04) : 1363 - 1388