Correlation of cation distribution with structure, magnetic and electrical properties of ultrafine Ni2+-doped CoFe2O4

被引:0
|
作者
Zeyad M. Abdulhamid
A. A. Sattar
Atef S. Darwish
A. A. Ghani
机构
[1] Ain Shams University,Physics Department, Faculty of Science
[2] Ain Shams University,Chemistry Department, Faculty of Science
来源
Applied Physics A | 2020年 / 126卷
关键词
Cation distribution; Sol–gel; Magnetic properties; Electrical properties;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents the estimation of cation distribution of ultrafine NixCo1−xFe2O4 nano-ferrites (x = 0, 0.25, 0.5, 0.75 and 1) from structure, magnetic and electrical investigations. “Sol gel” was the method used to synthesize Ni–Co ferrites. Ni2+-doped CoFe2O4 nanostructure has a broad range of electromagnetic applications due to its controllable magnetic and electrical properties. From XRD patterns, the formation of pure phase was obvious, and the crystallite size ranged from 9 to 12 nm. These sizes are small enough to achieve suitable signal-to-noise ratio for high-density recording media and have more opportunities for technological application, especially in medical fields. Besides, the variation of theoretical lattice parameter with x-content was in a good agreement with experimental ones. Field Emission Scanning Electron Microscope (FESEM) revealed the formation of small nanosphere particles with gradual size reduction on addition of Ni2+ ions. Energy-Dispersive X-ray analysis (EDX) confirmed the purity of prepared samples. Magnetic parameters (Ms, Mr and Hc) were determined from Vibrating Sample Magnetometer (VSM). It was found that both Ms and Hc have gradual decrease with increasing x-content. Curie temperature was determined from the variation of relative permeability with temperature and showed also a gradual decrease with addition of Ni2+ ions. Temperature dependence of both DC electrical resistivity and thermoelectric power coefficient were carried out in the temperature range 385–548 K. The resistivity showed a gradual decrease with increasing x-content. However, the negativity of thermoelectric power coefficient showed a gradual increase with addition of Ni2+ ions. Conduction mechanism was deduced for all studied samples from activation energy values. The cation distribution was proposed such that it could verify the lattice parameter and magnetization of each composition as well as the behavior of resistivity and thermoelectric power.
引用
收藏
相关论文
共 50 条
  • [41] Preparation and magnetic properties of CoFe2O4 nanowires
    Feng, Ming
    Wang, Wen
    Zhou, Yu
    Jia, De-Chang
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2009, 38 (SUPPL. 1): : 61 - 63
  • [42] The magnetic properties of diluted CoFe2O4 nanomaterials
    R. Masrour
    M. Hamedoun
    A. Benyoussef
    Chinese Physics B, 2012, (04) : 517 - 522
  • [43] The magnetic properties of diluted CoFe2O4 nanomaterials
    Masrour, R.
    Hamedoun, M.
    Benyoussef, A.
    CHINESE PHYSICS B, 2012, 21 (04)
  • [44] Synthesis and magnetic properties of CoFe2O4 nanoparticles
    Zhang, Yue-Ping
    Song, Ping-Xin
    Song, Xiao-Hui
    Mi, Zhen-Yu
    An, Lu-Lu
    Zhang, Ying-Jiu
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2014, 43 (12): : 3118 - 3123
  • [45] Magnetic properties of nanophase CoFe2O4 particles
    Bulgarian Acad of Sciences, Sofia, Bulgaria
    J Magn Magn Mater, 2-3 (331-337):
  • [46] Magnetic properties of nanophase CoFe2O4 particles
    Blaskov, V
    Petkov, V
    Rusanov, V
    Martinez, LM
    Martinez, B
    Munoz, JS
    Mikhov, M
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1996, 162 (2-3) : 331 - 337
  • [47] Magnetic properties of nanocrystalline CoFe2O4 particles
    Zhang, XX
    Roig, A
    Hernandez, JM
    Molins, E
    Tejada, J
    Ziolo, RF
    MAGNETIC HYSTERESIS IN NOVEL MAGNETIC MATERIALS, 1997, 338 : 383 - 387
  • [48] Structure and Magnetic Properties of Mn-doped CoFe2O4 Nanoparticles Prepared by Solvothermal Route
    Phumying, Santi
    Phokha, Sumalin
    Maensiri, Santi
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2014, 27 (11) : 2573 - 2579
  • [49] Structural and properties correlation in PANI-Mo doped CoFe2O4 nanocomposite
    Mohamed, Mohamed Bakr
    Heiba, Zein K.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (23) : 17578 - 17586
  • [50] Structure and Magnetic Properties of Mn-doped CoFe2O4 Nanoparticles Prepared by Solvothermal Route
    Santi Phumying
    Sumalin Phokha
    Santi Maensiri
    Journal of Superconductivity and Novel Magnetism, 2014, 27 : 2573 - 2579