Cyclic codes of length 5p with MDS symbol-pair

被引:0
|
作者
Fengwei Li
机构
[1] Nanjing University of Posts and Telecommunications,College of Science
[2] Zaozhuang University,School of Mathematics and Statistics
来源
关键词
Symbol-pair code; MDS symbol-pair code; Cyclic code; 94B05; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime with 5|(p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5 |(p-1)$$\end{document}. Let S be a set of all repeated-root cyclic codes C=⟨g(x)⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}=\langle g(x)\rangle $$\end{document}, (x5-1)|g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x^5-1)|g(x)$$\end{document}, of length 5p over a field field Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_p$$\end{document}, whose Hamming distances are at most 7. In this paper, we present a method to find all maximum distance separable (MDS) symbol-pair codes in S. By this method we can easily obtain the results in Ma and Luo (Des Codes Cryptogr 90:121–137, 2022) and new MDS symbol-pair codes, so we remain two possible MDS symbol-pair codes for readers.
引用
收藏
页码:1873 / 1888
页数:15
相关论文
共 50 条
  • [41] Codes Correcting Synchronization Errors for Symbol-Pair Read Channels
    Chee, Yeow Meng
    Van Khu Vu
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 746 - 750
  • [42] Function-Correcting Codes for Symbol-Pair Read Channels
    Xia, Qingfeng
    Liu, Hongwei
    Chen, Bocong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (11) : 7807 - 7819
  • [43] On the symbol-pair distances of repeated-root constacyclic codes of length 2ps
    Dinh, Hai Q.
    Wang, Xiaoqiang
    Liu, Hongwei
    Sriboonchitta, Songsak
    DISCRETE MATHEMATICS, 2019, 342 (11) : 3062 - 3078
  • [44] The symbol-pair distance distribution of a class of repeated-root cyclic codes over Fpm
    Sun, Zhonghua
    Zhu, Shixin
    Wang, Liqi
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (04): : 643 - 653
  • [45] Bounds and Constructions of Codes Over Symbol-Pair Read Channels
    Elishco, Ohad
    Gabrys, Ryan
    Yaakobi, Eitan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (03) : 1385 - 1395
  • [46] MDS Symbol-Pair Repeated-Root Constacylic Codes of Prime Power Lengths Over Fpm + uFpm
    Dinh, H. Q.
    Kumam, P.
    Kumar, P.
    Satpati, S.
    Singh, A. K.
    Yamaka, W.
    IEEE ACCESS, 2019, 7 : 145039 - 145048
  • [47] Sliding window symbol-pair constrained codes for energy harvesting
    Kumar, Narendra
    Bhoi, Siddhartha Siddhiprada
    Gupta, Ruchir
    Singh, Abhay Kumar
    ANNALS OF TELECOMMUNICATIONS, 2023, 78 (1-2) : 71 - 77
  • [48] Constacyclic Symbol-Pair Codes: Lower Bounds and Optimal Constructions
    Chen, Bocong
    Lin, Liren
    Liu, Hongwei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (12) : 7661 - 7666
  • [49] Maximum Distance Separable Codes for Symbol-Pair Read Channels
    Chee, Yeow Meng
    Ji, Lijun
    Kiah, Han Mao
    Wang, Chengmin
    Yin, Jianxing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) : 7259 - 7267
  • [50] Bounds and Constructions of Codes over Symbol-Pair Read Channels
    Elishco, Ohad
    Gabrys, Ryan
    Yaakobi, Eitan
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 2505 - 2509