A Variation of uncertainty principles for the continuous wavelet transform connected with the Riemann–Liouville operator

被引:0
|
作者
Khaled Hleili
机构
[1] Northern Borders University,Department of Mathematics, Faculty of Science
[2] Preparatory Institute for Engineering Studies of Kairouan,Department of Mathematics
来源
Afrika Matematika | 2023年 / 34卷
关键词
Wavelet transform; Heisenberg’s type inequality; Donoho–Stark’s uncertainty principles; Local uncertainty principles; Pitt’s inequality; Logarithmic uncertainty principle; 44A05; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to prove a generalization of uncertainty principles for the continuous wavelet transform connected with the Riemann–Liouville operator in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-norm. More precisely, we establish the Heisenberg–Pauli–Weyl uncertainty principle, Donoho–Stark’s uncertainty principles and local Cowling-Price’s type inequalities. Finally, Pitt’s inequality and Beckner’s uncertainty principle are proved for this transform.
引用
收藏
相关论文
共 50 条