White Noise of Poisson Random Measures

被引:0
|
作者
Bernt Øksendal
Frank Proske
机构
[1] University of Oslo,Centre of Mathematics for Applications (CMA), Department of Mathematics
来源
Potential Analysis | 2004年 / 21卷
关键词
Lévy processes; Poisson random measures; white noise; stochastic derivatives; chaos expansions; generalized Clark–Haussmann–Ocone formula; portfolios in financial markets;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a white noise theory for Poisson random measures associated with a pure jump Lévy process. The starting point of this theory is the chaos expansion of Itô. We use this to construct the white noise of a Poisson random measure, which takes values in a certain distribution space. Then we show, how a Skorohod/Itô integral for point processes can be represented by a Bochner integral in terms of white noise of the random measure and a Wick product. Further, based on these concepts we derive a generalized Clark–Haussmann–Ocone theorem with respect to a combination of Gaussian noise and pure jump Lévy noise. We apply this theorem to obtain an explicit formula for partial observation minimal variance portfolios in financial markets, driven by Lévy processes. As an example we compute the “closest” hedge to a binary option.
引用
收藏
页码:375 / 403
页数:28
相关论文
共 50 条
  • [1] White noise of Poisson random measures
    Oksendal, B
    Proske, F
    POTENTIAL ANALYSIS, 2004, 21 (04) : 375 - 403
  • [2] Random vibration of hysteretic systems under Poisson white noise excitations
    Chen, Lincong
    Yuan, Zi
    Qian, Jiamin
    Sun, J. Q.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2023, 44 (02) : 207 - 220
  • [3] Random vibration of hysteretic systems under Poisson white noise excitations
    Lincong CHEN
    Zi YUAN
    Jiamin QIAN
    J.Q.SUN
    Applied Mathematics and Mechanics(English Edition), 2023, 44 (02) : 207 - 220
  • [4] Random vibration of hysteretic systems under Poisson white noise excitations
    Lincong Chen
    Zi Yuan
    Jiamin Qian
    J. Q. Sun
    Applied Mathematics and Mechanics, 2023, 44 : 207 - 220
  • [5] Random vibrations of Rayleigh vibroimpact oscillator under Parametric Poisson white noise
    Yang, Guidong
    Xu, Wei
    Jia, Wantao
    He, Meijuan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 33 : 19 - 29
  • [6] RANDOM-WALK IN DYNAMICALLY DISORDERED CHAINS - POISSON WHITE NOISE DISORDER
    HERNANDEZGARCIA, E
    PESQUERA, L
    RODRIGUEZ, MA
    SANMIGUEL, M
    JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (5-6) : 1027 - 1052
  • [7] WHITE NOISE AND POISSON DISTRIBUTIONS
    BLANCLAPIERRE, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (11): : 718 - +
  • [8] RAMSEY THEOREM AND POISSON RANDOM MEASURES
    BROWN, TC
    KUPKA, J
    ANNALS OF PROBABILITY, 1983, 11 (04): : 904 - 908
  • [9] Dynamic Systems with Poisson White Noise
    Mircea Grigoriu
    Nonlinear Dynamics, 2004, 36 : 255 - 266
  • [10] Dynamic systems with Poisson white noise
    Grigoriu, M
    NONLINEAR DYNAMICS, 2004, 36 (2-4) : 255 - 266