Random vibrations of Rayleigh vibroimpact oscillator under Parametric Poisson white noise

被引:13
|
作者
Yang, Guidong [1 ]
Xu, Wei [1 ]
Jia, Wantao [1 ]
He, Meijuan [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2016年 / 33卷
基金
中国国家自然科学基金;
关键词
Random vibration; Vibroimpact system; Parametric Poisson white noise; Perturbation method; Stochastic response; Stochastic bifurcation; VIBRO-IMPACT SYSTEMS; STOCHASTIC RESPONSES; DUFFING-VAN; BIFURCATIONS; LINEARIZATION; RESONANCE; DYNAMICS; MOTIONS;
D O I
10.1016/j.cnsns.2015.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Random vibration problems for a single-degree-of-freedom (SDOF) Rayleigh vibroimpact system with a rigid barrier under parametric Poisson white noise are considered. The averaged generalized Fokker-Planck-Kolmogorov (FPK) equations with parametric Poisson white noise are derived after using the nonsmooth variable transformation and the approximate stationary solutions for the system's response are obtained by perturbation method. The results are validated numerically by using Monte Carlo simulations from original vibroimpact system. Effects on the response for different damping coefficients, restitution coefficients and noise intensities are discussed. Furthermore, stochastic bifurcations are also explored. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 29
页数:11
相关论文
共 50 条
  • [1] Response analysis of Rayleigh–Van der Pol vibroimpact system with inelastic impact under two parametric white-noise excitations
    Guidong Yang
    Wei Xu
    Jinqian Feng
    Xudong Gu
    Nonlinear Dynamics, 2015, 82 : 1797 - 1810
  • [2] Response analysis of Rayleigh-Van der Pol vibroimpact system with inelastic impact under two parametric white-noise excitations
    Yang, Guidong
    Xu, Wei
    Feng, Jinqian
    Gu, Xudong
    NONLINEAR DYNAMICS, 2015, 82 (04) : 1797 - 1810
  • [3] Stochastic stabilization of first-passage failure of Rayleigh oscillator under Gaussian White-Noise parametric excitations
    Li, JR
    Xu, W
    CHAOS SOLITONS & FRACTALS, 2005, 26 (05) : 1515 - 1521
  • [4] Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and Poisson white noise parametric excitations
    Liu, Weiyan
    Zhu, Weiqiu
    Chen, Lincong
    PROBABILISTIC ENGINEERING MECHANICS, 2018, 53 : 109 - 115
  • [5] White Noise of Poisson Random Measures
    Bernt Øksendal
    Frank Proske
    Potential Analysis, 2004, 21 : 375 - 403
  • [6] White noise of Poisson random measures
    Oksendal, B
    Proske, F
    POTENTIAL ANALYSIS, 2004, 21 (04) : 375 - 403
  • [7] Random vibration of hysteretic systems under Poisson white noise excitations
    Chen, Lincong
    Yuan, Zi
    Qian, Jiamin
    Sun, J. Q.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2023, 44 (02) : 207 - 220
  • [8] Random vibration of hysteretic systems under Poisson white noise excitations
    Lincong CHEN
    Zi YUAN
    Jiamin QIAN
    J.Q.SUN
    Applied Mathematics and Mechanics(English Edition), 2023, 44 (02) : 207 - 220
  • [9] Random vibration of hysteretic systems under Poisson white noise excitations
    Lincong Chen
    Zi Yuan
    Jiamin Qian
    J. Q. Sun
    Applied Mathematics and Mechanics, 2023, 44 : 207 - 220
  • [10] Stochastic linearization of dynamical systems under parametric Poisson white noise excitation
    Proppe, C
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2003, 38 (04) : 543 - 555