Complexity Results for Generating Subgraphs

被引:0
|
作者
Vadim E. Levit
David Tankus
机构
[1] Ariel University,Department of Computer Science
[2] Sami Shamoon College of Engineering,Department of Software Engineering
来源
Algorithmica | 2018年 / 80卷
关键词
Weighted well-covered graph; Maximal independent set; Relating edge; Generating subgraph; Vector space;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function w is defined on its vertices. Then G is w-well-covered if all maximal independent sets are of the same weight. For every graph G, the set of weight functions w such that G is w-well-covered is a vector space, denoted WCW(G). Let B be a complete bipartite induced subgraph of G on vertex sets of bipartition BX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{X}$$\end{document} and BY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{Y}$$\end{document}. Then B is generating if there exists an independent set S such that S∪BX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \cup B_{X}$$\end{document} and S∪BY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \cup B_{Y}$$\end{document} are both maximal independent sets of G. In the restricted case that a generating subgraph B is isomorphic to K1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,1}$$\end{document}, the unique edge in B is called a relating edge. Deciding whether an input graph G is well-covered is co-NP-complete. Therefore finding WCW(G) is co-NP-hard. Deciding whether an edge is relating is NP-complete. Therefore, deciding whether a subgraph is generating is NP-complete as well. In this article we discuss the connections among these problems, provide proofs for NP-completeness for several restricted cases, and present polynomial characterizations for some other cases.
引用
收藏
页码:2384 / 2399
页数:15
相关论文
共 50 条
  • [1] Complexity Results for Generating Subgraphs
    Levit, Vadim E.
    Tankus, David
    [J]. ALGORITHMICA, 2018, 80 (08) : 2384 - 2399
  • [2] Recognizing Generating Subgraphs Revisited
    Levit, Vadim E.
    Tankus, David
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2021, 32 (01) : 93 - 114
  • [3] Complexity of finding dense subgraphs
    Asahiro, Y
    Hassin, R
    Iwama, K
    [J]. DISCRETE APPLIED MATHEMATICS, 2002, 121 (1-3) : 15 - 26
  • [4] Forbidden subgraphs generating a finite set
    Fujisawa, Jun
    Plummer, Michael D.
    Saito, Akira
    [J]. DISCRETE MATHEMATICS, 2013, 313 (19) : 1835 - 1842
  • [5] The Complexity of Mining Maximal Frequent Subgraphs
    Kimelfeld, Benny
    Kolaitis, Phokion G.
    [J]. ACM TRANSACTIONS ON DATABASE SYSTEMS, 2014, 39 (04):
  • [6] ON THE COMPLEXITY OF PARTITIONING GRAPHS INTO CONNECTED SUBGRAPHS
    DYER, ME
    FRIEZE, AM
    [J]. DISCRETE APPLIED MATHEMATICS, 1985, 10 (02) : 139 - 153
  • [7] ON THE COMPLEXITY OF FINITE SUBGRAPHS OF THE CURVE GRAPH
    Bering, Edgar A.
    Conant, Gabriel
    Gaster, Jonah
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2018, 55 (04) : 795 - 808
  • [8] The complexity of counting colourings of subgraphs of the grid
    Farr, GE
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (03): : 377 - 383
  • [9] A NOTE ON THE COMPLEXITY OF FINDING REGULAR SUBGRAPHS
    PLESNIK, J
    [J]. DISCRETE MATHEMATICS, 1984, 49 (02) : 161 - 167
  • [10] Forbidden subgraphs in generating graphs of finite groups
    Università Degli Studi di Padova, Dipartimento di Matematica Tullio Levi-Civita, Via Trieste 63, Padova
    35121, Italy
    [J]. arXiv,