Pseudo transient continuation and time marching methods for Monge-Ampère type equations

被引:0
|
作者
Gerard Awanou
机构
[1] University of Illinois at Chicago,Department of Mathematics, Statistics, and Computer Science (M/C 249)
来源
关键词
Iterative methods; Monge-Ampère; conforming approximations; 65N30; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We present two numerical methods for the fully nonlinear elliptic Monge-Ampère equation. The first is a pseudo transient continuation method and the second is a pure pseudo time marching method. The methods are proven to converge to a strictly convex solution of a natural discrete variational formulation with C1 conforming approximations. The assumption of existence of a strictly convex solution to the discrete problem is proven for smooth solutions of the continuous problem and supported by numerical evidence for non smooth solutions.
引用
收藏
页码:907 / 935
页数:28
相关论文
共 50 条
  • [21] A complex parabolic type Monge-Ampère equation
    Spiliotis J.
    Applied Mathematics and Optimization, 1997, 35 (3): : 265 - 282
  • [22] Existence of convex solutions for systems of Monge-Ampère equations
    Min Gao
    Fanglei Wang
    Boundary Value Problems, 2015
  • [23] Stability estimates for the complex Monge-Ampère and Hessian equations
    Bin Guo
    Duong H. Phong
    Freid Tong
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [24] Contact linearization of Monge-Ampére equations and Laplace invariants
    A. G. Kushner
    Doklady Mathematics, 2008, 78 : 751 - 754
  • [25] A Liouville theorem for the Neumann problem of Monge-Amp?re equations
    Jian, Huaiyu
    Tu, Xushan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (06)
  • [26] Singular Monge-Ampère foliations
    Tom Duchamp
    Morris Kalka
    Mathematische Annalen, 2003, 325 : 187 - 209
  • [27] Remarks on Global Hölder regularity for a class of Monge-Ampère type equations
    Liu, Caifeng
    Zhang, Wanwan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [28] A property for the Monge-Ampère equation
    Daniele Puglisi
    Israel Journal of Mathematics, 2020, 236 : 959 - 965
  • [29] A SINGULAR DIRICHLET PROBLEM FOR THE MONGE-AMPÈRE TYPE EQUATION
    Zhang, Zhijun
    Zhang, Bo
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1965 - 1983
  • [30] Monge-Ampère geometry and vortices
    Napper, Lewis
    Roulstone, Ian
    Rubtsov, Vladimir
    Wolf, Martin
    NONLINEARITY, 2024, 37 (04)