Weighted theory of Toeplitz operators on the Bergman space

被引:0
|
作者
Cody B. Stockdale
Nathan A. Wagner
机构
[1] Clemson University,School of Mathematical Sciences and Statistics
[2] Brown University,Department of Mathematics
来源
Mathematische Zeitschrift | 2023年 / 305卷
关键词
Toeplitz operators; Bergman projection; Bergman space; Békollè-Bonami weights; Primary 32A50; Secondary 32A25; 32A36; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the weighted compactness and boundedness properties of Toeplitz operators on the Bergman space with respect to Békollè-Bonami type weights. Let Tu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_u$$\end{document} denote the Toeplitz operator on the (unweighted) Bergman space of the unit ball in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document} with symbol u∈L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in L^{\infty }$$\end{document}. We characterize the compact Toeplitz operators on the weighted Bergman space Aσp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}^p_\sigma $$\end{document} for all σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} in a subclass of the Békollè-Bonami class Bp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p$$\end{document} that includes radial weights and powers of the Jacobian of biholomorphic mappings. Concerning boundedness, we show that Tu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_u$$\end{document} extends boundedly on Lσp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p_{\sigma }$$\end{document} for p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (1,\infty )$$\end{document} and weights σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} in a u-adapted class of weights containing Bp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p$$\end{document}, and we establish analogous weighted endpoint weak-type (1, 1) bounds for weights beyond B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] BOUNDED TOEPLITZ OPERATORS ON BERGMAN SPACE
    Yan, Fugang
    Zheng, Dechao
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (02): : 386 - 406
  • [32] A GENERALIZATION OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE
    Suarez, Daniel
    JOURNAL OF OPERATOR THEORY, 2015, 73 (02) : 315 - 332
  • [33] Kernels of Toeplitz operators on the Bergman space
    Young Joo Lee
    Czechoslovak Mathematical Journal, 2023, 73 : 1119 - 1130
  • [34] Products of Toeplitz Operators on the Bergman Space
    Issam Louhichi
    Elizabeth Strouse
    Lova Zakariasy
    Integral Equations and Operator Theory, 2006, 54 : 525 - 539
  • [35] Products of Toeplitz operators on the Bergman space
    Ahern, P
    Cuckovic, Z
    ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (01) : 113 - 121
  • [36] Toeplitz operators on the polyharmonic Bergman space
    Bo Zhang
    Yixin Yang
    Yufeng Lu
    Annals of Functional Analysis, 2022, 13
  • [37] ROOTS OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE
    Louhichi, Issam
    Rao, N. V.
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 252 (01) : 127 - 144
  • [38] Products of Toeplitz operators on the Bergman space
    Louhichi, I
    Strouse, E
    Zakariasy, L
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 54 (04) : 525 - 539
  • [39] Normal Toeplitz Operators on the Bergman Space
    Kim, Sumin
    Lee, Jongrak
    MATHEMATICS, 2020, 8 (09)
  • [40] POSITIVE TOEPLITZ OPERATORS ON THE BERGMAN SPACE
    Das, Namita
    Sahoo, Madhusmita
    ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (02): : 171 - 182