Oscillation of second order neutral dynamic equations with deviating arguments on time scales

被引:0
|
作者
Ying Sui
Zhenlai Han
机构
[1] University of Jinan,School of Mathematical Sciences
关键词
Time scales; Oscillation; Neutral; Deviating arguments; 26E70; 34C10; 34K40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following second order neutral dynamic equations with deviating arguments on time scales: (r(t)(zΔ(t))α)Δ+q(t)f(y(m(t)))=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(r(t) \bigl(z^{\Delta}(t)\bigr)^{\alpha}\bigr)^{\Delta}+q(t)f \bigl(y\bigl(m(t)\bigr)\bigr)=0, $$\end{document} where z(t)=y(t)+p(t)y(τ(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$z(t)=y(t)+p(t)y(\tau(t))$\end{document}, m(t)≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(t)\leq t$\end{document} or m(t)≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(t)\geq t$\end{document}, and τ(t)≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau(t)\leq t$\end{document}. Some new oscillatory criteria are obtained by means of the inequality technique and a Riccati transformation. Our results extend and improve many well-known results for oscillation of second order dynamic equations. Some examples are given to illustrate the main results.
引用
收藏
相关论文
共 50 条
  • [41] OSCILLATION OF SECOND ORDER NONLINEAR IMPULSIVE DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS
    Thandapani, E.
    Sakthivel, R.
    Chandrasekaran, E.
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2012, 4 (04): : 571 - 580
  • [42] Oscillation of second order neutral equations with distributed deviating argument
    Xu, Zhiting
    Weng, Peixuan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 202 (02) : 460 - 477
  • [43] OSCILLATION OF NEUTRAL SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITHOUT COMMUTATIVITY IN DEVIATING ARGUMENTS
    Finarova, Simona
    Marik, Robert
    [J]. MATHEMATICA SLOVACA, 2017, 67 (03) : 701 - 718
  • [44] OSCILLATION OF SECOND-ORDER INTEGRO-DYNAMIC EQUATIONS WITH DAMPING AND DISTRIBUTED DEVIATING ARGUMENTS
    Agwa, Hassan A. H.
    Arafa, Heba M.
    Bohner, Martin
    Naby, Mokhtar A. A.
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (06) : 1275 - 1288
  • [45] Oscillation of second order nonlinear dynamic equations on time scales
    Bohner, M
    Saker, SH
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (04) : 1239 - 1254
  • [46] Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales
    Saker, Samir H.
    O'Regan, Donal
    Agarwal, Ravi P.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (09) : 1409 - 1432
  • [47] Oscillation Criteria for Second-Order Quasilinear Neutral Delay Dynamic Equations on Time Scales
    Sun, Yibing
    Han, Zhenlai
    Li, Tongxing
    Zhang, Guangrong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [48] Oscillation Theorems for Second-Order Nonlinear Neutral Delay Dynamic Equations on Time Scales
    Samir H.SAKER
    Donal O’REGAN
    Ravi P.AGARWAL
    [J]. Acta Mathematica Sinica,English Series, 2008, 24 (09) : 5 - 5
  • [49] Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales
    Saker, Samir H.
    Agarwal, Ravi P.
    O'Regan, Donal
    [J]. APPLICABLE ANALYSIS, 2007, 86 (01) : 1 - 17
  • [50] OSCILLATION AND NONOSCILLATION FOR SECOND-ORDER NONLINEAR NEUTRAL FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES
    Deng, Xun-Huan
    Wang, Qi-Ru
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,