Oscillation of second order neutral dynamic equations with deviating arguments on time scales

被引:0
|
作者
Ying Sui
Zhenlai Han
机构
[1] University of Jinan,School of Mathematical Sciences
关键词
Time scales; Oscillation; Neutral; Deviating arguments; 26E70; 34C10; 34K40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following second order neutral dynamic equations with deviating arguments on time scales: (r(t)(zΔ(t))α)Δ+q(t)f(y(m(t)))=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(r(t) \bigl(z^{\Delta}(t)\bigr)^{\alpha}\bigr)^{\Delta}+q(t)f \bigl(y\bigl(m(t)\bigr)\bigr)=0, $$\end{document} where z(t)=y(t)+p(t)y(τ(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$z(t)=y(t)+p(t)y(\tau(t))$\end{document}, m(t)≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(t)\leq t$\end{document} or m(t)≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(t)\geq t$\end{document}, and τ(t)≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau(t)\leq t$\end{document}. Some new oscillatory criteria are obtained by means of the inequality technique and a Riccati transformation. Our results extend and improve many well-known results for oscillation of second order dynamic equations. Some examples are given to illustrate the main results.
引用
收藏
相关论文
共 50 条