Class imbalance data handling with optimal deep learning-based intrusion detection in IoT environment

被引:0
|
作者
Manohar Srinivasan
Narayanan Chidambaram Senthilkumar
机构
[1] Vellore Institute of Technology,School of Computer Science Engineering and Information Systems
来源
Soft Computing | 2024年 / 28卷
关键词
Internet of Things; Intrusion detection system; Class imbalance data handling; Deep learning; Snake optimization algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The Internet of Things (IoT) has performed a paradigm shift in the method devices and systems interact, allowing seamless connectivity and communication. But, the enhancing interconnectedness and difficulty of IoT platforms also establish novel security problems, making intrusion detection a vital feature of IoT system security. Intrusion detection systems (IDS) role a vital play in detecting and monitoring unauthorized actions or malicious behavior in IoT networks. Typical IDS frequently depends on handcrafted rules or signatures that cannot not efficiently capture the difficult and developing nature of recent cyber threats. Deep learning (DL) methods automatically study and extract high-level representations in raw data, allowing more accurate and adaptive IDs. Most problems in emerging effectual IDSs are the presence of class imbalances in the database, but the count of normal instances far outweighs the count of intrusion samples. This paper focuses on the design of class imbalance data handling with optimal deep learning-based intrusion detection (CIDH-ODLID) techniques in IoT environments. The purpose of this study is to develop a CIDH-ODLID technique for the identification of intrusions in the IoT platform. For the class imbalance data handling process, the SMOTE approach is used in this work. In addition, the CIDH-ODLID technique employs an echo state network (ESN) approach for intrusion detection and classification. Finally, the snake optimization algorithm (SOA) was carried out for an optimum hyperparameter selection of the ESN approach. The performance validation of the CIDH-ODLID approach was performed on the benchmark database. To prove that the previously provided model performed better, a thorough simulation was run. The researchers provided a thorough comparative analysis that showed the proposed approach was better than other current procedures. It had an accuracy of 99.56%, precision of 97.50%, recall of 98.42%, and an F-score of 97.95%. The experimental outcomes exhibit the promising performance of the CIDH-ODLID technique over other models.
引用
收藏
页码:4519 / 4529
页数:10
相关论文
共 50 条
  • [31] A network intrusion detection system based on deep learning in the IoT
    Wang, Xiao
    Dai, Lie
    Yang, Guang
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16): : 24520 - 24558
  • [32] An Ensemble Learning-Based Undersampling Technique for Handling Class-Imbalance Problem
    Sarkar, Sobhan
    Khatedi, Nikhil
    Pramanik, Anima
    Maiti, J.
    PROCEEDINGS OF ICETIT 2019: EMERGING TRENDS IN INFORMATION TECHNOLOGY, 2020, 605 : 586 - 595
  • [33] Machine Learning-based Intrusion Detection for IoT Devices in Smart Home
    Li, Taotao
    Hong, Zhen
    Yu, Li
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 277 - 282
  • [34] Improving Privacy in Federated Learning-Based Intrusion Detection for IoT Networks
    Syne, Lamine
    Caballero-Gil, Pino
    Hernandez-Goya, Candelaria
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 580 - 582
  • [35] Feature extraction for machine learning-based intrusion detection in IoT networks
    Mohanad Sarhan
    Siamak Layeghy
    Nour Moustafa
    Marcus Gallagher
    Marius Portmann
    Digital Communications and Networks, 2024, 10 (01) : 205 - 216
  • [36] Feature extraction for machine learning-based intrusion detection in IoT networks
    Sarhan, Mohanad
    Layeghy, Siamak
    Moustafa, Nour
    Gallagher, Marcus
    Portmann, Marius
    DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (01) : 205 - 216
  • [37] Federated Deep Learning-based Intrusion Detection Approach for Enhancing Privacy in Fog-IoT Networks
    Radjaa, Bensaid
    Nabila, Labraoui
    Salameh, Haythem Bany
    2023 10TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS: SYSTEMS, MANAGEMENT AND SECURITY, IOTSMS, 2023, : 156 - 160
  • [38] Metaverse-IDS: Deep learning-based intrusion detection system for Metaverse-IoT networks
    Gaber, Tarek
    Awotunde, Joseph Bamidele
    Torky, Mohamed
    Ajagbe, Sunday A.
    Hammoudeh, Mohammad
    Li, Wei
    INTERNET OF THINGS, 2023, 24
  • [39] Deep learning approach for intrusion detection in IoT-multi cloud environment
    Selvapandian, D.
    Santhosh, R.
    AUTOMATED SOFTWARE ENGINEERING, 2021, 28 (02)
  • [40] Deep learning approach for intrusion detection in IoT-multi cloud environment
    D. Selvapandian
    R. Santhosh
    Automated Software Engineering, 2021, 28