Capabilities of the Gamma-400 Gamma-ray Telescope for Observation of Electrons and Positrons in the TeV Energy Range

被引:0
|
作者
A. A. Leonov
A. M. Galper
N. P. Topchiev
A. V. Bakaldin
M. D. Kheimits
A. V. Mikhailova
V. V. Mikhailov
S. I. Suchkov
机构
[1] National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
[2] P.N. Lebedev Physical Institute of the Russian Academy of Sciences,undefined
[3] Scientific Research Institute for System Analysis of the Russian Academy of Sciences,undefined
来源
Physics of Atomic Nuclei | 2019年 / 82卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The space-based GAMMA-400 gamma-ray telescope will measure the fluxes of gamma rays in the energy range from ∼20 MeV to several TeV and cosmic-ray electrons and positrons in the energy range from several GeV to several TeV to investigate the origin of gamma-ray sources, sources and propagation of the Galactic cosmic rays and signatures of dark matter. The instrument consists of an anticoincidence system, a converter-tracker (thickness one radiation length, 1 X0), a time-of-flight system, an imaging calorimeter (2 X0) with tracker, a top shower scintillator detector, an electromagnetic calorimeter from CsI(Tl) crystals (16 X0) with four lateral scintillation detectors and a bottom shower scintillator detector. In this paper, the capability of the GAMMA-400 gamma-ray telescope for electron and positron measurements is analyzed. The bulk of cosmic rays are protons, whereas the contribution of the leptonic component to the total flux is ∼10−3 at high energy. The special methods for Monte Carlo simulations are proposed to distinguish electrons and positrons from proton background in the GAMMA-400 gamma-ray telescope. The contribution to the proton rejection from each detector system of the instrument is studied separately. The use of the combined information from all detectors allows us to reach a proton rejection of up to ∼1 × 104.
引用
收藏
页码:855 / 858
页数:3
相关论文
共 50 条
  • [31] Gamma-Ray Observation of the Cygnus Region in the 100-TeV Energy Region
    Amenomori, M.
    Bao, Y. W.
    Bi, X. J.
    Chen, D.
    Chen, T. L.
    Chen, W. Y.
    Chen, Xu
    Chen, Y.
    Cirennima
    Cui, S. W.
    Danzengluobu
    Ding, L. K.
    Fang, J. H.
    Fang, K.
    Feng, C. F.
    Feng, Zhaoyang
    Feng, Z. Y.
    Gao, Qi
    Gomi, A.
    Gou, Q. B.
    Guo, Y. Q.
    Guo, Y. Y.
    He, H. H.
    He, Z. T.
    Hibino, K.
    Hotta, N.
    Hu, Haibing
    Hu, H. B.
    Huang, J.
    Jia, H. Y.
    Jiang, L.
    Jiang, P.
    Jin, H. B.
    Kasahara, K.
    Katayose, Y.
    Kato, C.
    Kato, S.
    Kawata, K.
    Kozai, M.
    Kurashige, D.
    Labaciren
    Le, G. M.
    Li, A. F.
    Li, H. J.
    Li, W. J.
    Li, Y.
    Lin, Y. H.
    Liu, B.
    Liu, C.
    Liu, J. S.
    PHYSICAL REVIEW LETTERS, 2021, 127 (03)
  • [32] The counting and triggers signals formation system for gamma-telescope GAMMA-400
    Arkhangelskaja, I. V.
    Arkhangelskiy, A. I.
    Chasovikov, E. N.
    Galper, A. M.
    Kheymits, M. D.
    Murchenko, A. E.
    Yurkin, Y. T.
    FUNDAMENTAL RESEARCH IN PARTICLE PHYSICS AND COSMOPHYSICS, 2015, 74 : 212 - 219
  • [33] The Anticoincidence System of Space-Based Gamma-Ray Telescope GAMMA-400, Test Beam Studies of Anticoincidence Detector Prototype with SiPM Readout
    A. I. Arkhangelskiy
    A. M. Galper
    I. V. Arkhangelskaja
    A. V. Bakaldin
    I. V. Chernysheva
    O. D. Dalkarov
    A. E. Egorov
    Yu. V. Gusakov
    M. D. Kheymits
    A. A. Leonov
    N. Yu. Pappe
    M. F. Runtso
    Yu. I. Stozhkov
    S. I. Suchkov
    N. P. Topchiev
    Yu. T. Yurkin
    Physics of Atomic Nuclei, 2020, 83 : 252 - 257
  • [34] From solar energy to gamma-ray 'telescope'
    Nadis, S
    NATURE, 1996, 383 (6599) : 372 - 373
  • [35] The Anticoincidence System of Space-Based Gamma-Ray Telescope GAMMA-400, Test Beam Studies of Anticoincidence Detector Prototype with SiPM Readout
    Arkhangelskiy, A. I.
    Galper, A. M.
    Arkhangelskaja, I. V.
    Bakaldin, A. V.
    Chernysheva, I. V.
    Dalkarov, O. D.
    Egorov, A. E.
    Gusakov, Yu. V.
    Kheymits, M. D.
    Leonov, A. A.
    Pappe, N. Yu.
    Runtso, M. F.
    Stozhkov, Yu. I.
    Suchkov, S. I.
    Topchiev, N. P.
    Yurkin, Yu. T.
    PHYSICS OF ATOMIC NUCLEI, 2020, 83 (02) : 252 - 257
  • [36] HIGH-ENERGY GAMMA-RAY TELESCOPE
    不详
    NUCLEONICS, 1962, 20 (10): : 69 - &
  • [37] Calibrating the Prototype Calorimeter for the GAMMA-400 γ-Ray Telescope on the Positron Beam at the Pakhra Accelerator
    Suchkov, S., I
    Arkhangelskiy, A., I
    Baskov, V. A.
    Galper, A. M.
    Dalkarov, O. D.
    L'vov, A., I
    Pappe, N. Yu
    Polyansky, V. V.
    Topchiev, N. P.
    Chernysheva, I., V
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2021, 64 (05) : 669 - 675
  • [38] Calibrating the Prototype Calorimeter for the GAMMA-400 γ-Ray Telescope on the Positron Beam at the Pakhra Accelerator
    S. I. Suchkov
    A. I. Arkhangelskiy
    V. A. Baskov
    A. M. Galper
    O. D. Dalkarov
    A. I. L’vov
    N. Yu. Pappe
    V. V. Polyansky
    N. P. Topchiev
    I. V. Chernysheva
    Instruments and Experimental Techniques, 2021, 64 : 669 - 675
  • [39] GAMMA-400 space gamma-telescope mathematical model with engineering elements included
    Chasovikov, E. N.
    Arkhangelskaja, I. V.
    Perfil'ev, A. A.
    Arkhangelskiy, A. I.
    Galper, A. M.
    Topchiev, N. P.
    Gusakov, Yu. V.
    Kheymits, M. D.
    Yurkin, Yu. T.
    FUNDAMENTAL RESEARCH IN PARTICLE PHYSICS AND COSMOPHYSICS, 2015, 74 : 206 - 211
  • [40] TeV gamma-ray astronomy
    Chadwick, P. M.
    Latham, I. J.
    Nolan, S. J.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2008, 35 (03)