Singular Riemann-Hilbert problem in complex-shaped domains

被引:1
|
作者
S. I. Bezrodnykh
V. I. Vlasov
机构
[1] Russian Academy of Sciences,Dorodnicyn Computing Center
[2] Moscow State University,Sternberg Astronomical Institute
关键词
Riemann-Hilbert problem; Cauchy-type integral; conformal mappings; Schwarz-Christoffel integral; hypergeometric functions;
D O I
暂无
中图分类号
学科分类号
摘要
In simply connected complex-shaped domains ℬ a Riemann-Hilbert problem with discontinuous data and growth condidions of a solution at some points of the boundary is considered. The desired analytic function ℱ(z) is represented as the composition of a conformal mapping of ℬ onto the half-plane \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H}^ + $\end{document} and the solution ℘ of the corresponding Riemann-Hilbert problem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H}^ + $\end{document}. Methods for finding this mapping are described, and a technique for constructing an analytic function ℘+ in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H}^ + $\end{document} in the terms of a modified Cauchy-type integral. In the case of piecewise constant data of the problem, a fundamentally new representation of ℘+ in the form of a Christoffel-Schwarz-type integral is obtained, which solves the Riemann problem of a geometric interpretation of the solution and is more convenient for numerical implementation than the conventional representation in terms of Cauchytype integrals.
引用
收藏
页码:1826 / 1875
页数:49
相关论文
共 50 条
  • [21] On the modification of the method of the Riemann-Hilbert problem
    Khoroshun, VV
    1998 INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, VOLS 1 AND 2, 1998, : 772 - 774
  • [22] THE RIEMANN-HILBERT PROBLEM IN THE IRREGULAR CASE
    Guillermou, Stephane
    ASTERISQUE, 2019, (407) : 267 - 296
  • [23] The Riemann-Hilbert problem and special functions
    Novokshenov, V. Yu.
    GEOMETRIC METHODS IN PHYSICS, 2008, 1079 : 149 - 161
  • [24] THE RIEMANN-HILBERT PROBLEM FOR HOLONOMIC SYSTEMS
    KASHIWARA, M
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (02) : 319 - 365
  • [25] RIEMANN-HILBERT PROBLEM FOR THE HOLOMORPHOUS VECTOR
    BOIARSKII, BV
    DOKLADY AKADEMII NAUK SSSR, 1959, 126 (04): : 695 - 698
  • [26] A Riemann-Hilbert problem for biorthogonal polynomials
    Kuijlaars, ABJ
    McLaughlin, KTR
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 313 - 320
  • [27] On the Riemann-Hilbert Problem for the Beltrami Equations
    Yefimushkin, Artyem
    Ryazanov, Vladimir
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS, 2016, 667 : 299 - 316
  • [28] On the Riemann-Hilbert problem of the Kundu equation
    Hu, Beibei
    Zhang, Ling
    Xia, Tiecheng
    Zhang, Ning
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 381
  • [29] The Riemann-Hilbert problem in loop spaces
    G. Giorgadze
    G. Khimshiashvili
    Doklady Mathematics, 2006, 73 : 258 - 260
  • [30] A SPECIAL CASE OF THE RIEMANN-HILBERT PROBLEM
    BOYARSKY, BV
    DOKLADY AKADEMII NAUK SSSR, 1958, 119 (03): : 411 - 414