Continuity Properties of Integral Kernels Associated with Schrödinger Operators on Manifolds

被引:0
|
作者
Jochen Brüning
Vladimir Geyler
Konstantin Pankrashkin
机构
[1] Humboldt-Universität zu Berlin,Institut für Mathematik
[2] Mordovian State University,Mathematical Faculty
[3] Université Paris 13,Département de Mathématiques
来源
Annales Henri Poincaré | 2007年 / 8卷
关键词
Manifold; Riemannian Manifold; Integral Operator; Green Function; Heat Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
For Schrödinger operators (including those with magnetic fields) with singular scalar potentials on manifolds of bounded geometry, we study continuity properties of some related integral kernels: the heat kernel, the Green function, and also kernels of some other functions of the operator. In particular, we show the joint continuity of the heat kernel and the continuity of the Green function outside the diagonal. The proof makes intensive use of the Lippmann–Schwinger equation.
引用
收藏
页码:781 / 816
页数:35
相关论文
共 50 条