Sharp Approximations for Complete p-Elliptic Integral of the Second Kind by Weighted Power Means

被引:0
|
作者
Tiehong Zhao
机构
[1] Hangzhou Normal University,School of mathematics
关键词
Gaussian hypergeometric function; Complete ; -elliptic integral; Weighted power mean; Primary 33E05; Secondary 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the well-known double inequality for the complete elliptic integral E(r) of the second kind, which gives sharp approximations of E(r) by power means (or Hölder means), is extended to the complete p-elliptic integral Ep(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_p(r)$$\end{document} of the second kind, and thus sharp approximations of Ep(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_p(r)$$\end{document} by weighted power means are obtained. This result confirmed the truth of Conjecture I by Barnard, Ricards and Tiedeman in the case when a=b=1/p∈(0,1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=b=1/p\in (0,1/2)$$\end{document} and c=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=1$$\end{document} and also provides a new method to prove the above double inequality of E(r).
引用
收藏
相关论文
共 50 条
  • [1] Sharp Approximations for Complete p-Elliptic Integral of the Second Kind by Weighted Power Means
    Zhao, Tiehong
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (04)
  • [2] Asymptotically sharp bounds for the complete p-elliptic integral of the first kind
    Huang, Ti-Ren
    Chen, Lu
    Chu, Yu -Ming
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2022, 51 (02) : 189 - 210
  • [3] Discrete approximation of complete p-elliptic integral of the second kind and its application
    Zhao, Tiehong
    Wang, Miaokun
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (01)
  • [4] Discrete approximation of complete p-elliptic integral of the second kind and its application
    Tiehong Zhao
    Miaokun Wang
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2024, 118
  • [5] Approximations for the complete elliptic integral of the second Kind
    Qian, Wei-Mao
    Wang, Miao-Kun
    Xu, Hui-Zuo
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [6] Sharp weighted Holder mean bounds for the complete elliptic integral of the second kind
    Wang, Miao-Kun
    He, Zai-Yin
    Zhao, Tie-Hong
    Bao, Qi
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (07) : 537 - 551
  • [7] Sharp approximations for the complete elliptic integrals of the second kind by one-parameter means
    Yang, Zhen-Hang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (01) : 446 - 461
  • [8] Accurate approximations for the complete elliptic integral of the second kind
    Yang, Zhen-Hang
    Chu, Yu-Ming
    Zhang, Wen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (02) : 875 - 888
  • [9] Approximations related to the complete p-elliptic integrals
    Zhong, Genhong
    Ma, Xiaoyan
    Wang, Fei
    [J]. OPEN MATHEMATICS, 2022, 20 (01): : 1046 - 1056
  • [10] Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind
    Yang, Zhen-Hang
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03): : 929 - 936