The Size of Maximally Irregular Graphs and Maximally Irregular Triangle-Free Graphs

被引:0
|
作者
Fengxia Liu
Zhao Zhang
Jixiang Meng
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Irregularity index; Maximally irregular graphs; Triangle-free graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph. The irregularity index of G, denoted by t(G), is the number of distinct values in the degree sequence of G. For any graph G, t(G) ≤ Δ(G), where Δ(G) is the maximum degree. If t(G) = Δ(G), then G is called maximally irregular. In this paper, we give a tight upper bound on the size of maximally irregular graphs, and prove the conjecture proposed in [6] on the size of maximally irregular triangle-free graphs. Extremal graphs are also characterized.
引用
收藏
页码:699 / 705
页数:6
相关论文
共 50 条
  • [1] The Size of Maximally Irregular Graphs and Maximally Irregular Triangle-Free Graphs
    Liu, Fengxia
    Zhang, Zhao
    Meng, Jixiang
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (03) : 699 - 705
  • [2] Maximum Size of Maximally Irregular Graphs
    Horoldagva, Batmend
    Buyantogtokh, Lkhagva
    Dorjsembe, Shiikhar
    Gutman, Ivan
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 76 (01) : 81 - 98
  • [3] On Maximally Irregular Graphs
    Mukwembi, Simon
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (03) : 717 - 721
  • [4] Median graphs and triangle-free graphs
    Imrich, W
    Klavzar, S
    Mulder, HM
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 111 - 118
  • [5] Coloring triangle-free graphs with fixed size
    Gimbel, J
    Thomassen, C
    [J]. DISCRETE MATHEMATICS, 2000, 219 (1-3) : 275 - 277
  • [6] On the size of identifying codes in triangle-free graphs
    Foucaud, Florent
    Klasing, Ralf
    Kosowski, Adrian
    Raspaud, Andre
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (10-11) : 1532 - 1546
  • [7] On line graphs of subcubic triangle-free graphs
    Munaro, Andrea
    [J]. DISCRETE MATHEMATICS, 2017, 340 (06) : 1210 - 1226
  • [8] Triangle-free equimatchable graphs
    Buyukcolak, Yasemin
    Ozkan, Sibel
    Gozupek, Didem
    [J]. JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 461 - 484
  • [9] ON MAXIMAL TRIANGLE-FREE GRAPHS
    ERDOS, P
    HOLZMAN, R
    [J]. JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 585 - 594
  • [10] Triangle-free polyconvex graphs
    Isaksen, DC
    Robinson, B
    [J]. ARS COMBINATORIA, 2002, 64 : 259 - 263