The First Passage Time Problem Over a Moving Boundary for Asymptotically Stable Lévy Processes

被引:0
|
作者
Frank Aurzada
Tanja Kramm
机构
[1] Technische Universität Darmstadt,Arbeitsgruppe Stochastik, Fachbereich Mathematik
来源
关键词
Lévy process; Moving boundary; First passage time; Boundary crossing probability; Persistence probability; 60G51;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic tail behaviour of the first passage time over a moving boundary for asymptotically α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable Lévy processes with α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <1$$\end{document}. Our main result states that if the left tail of the Lévy measure is regularly varying with index -α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$- \alpha $$\end{document}, and the moving boundary is equal to 1-tγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 - t^{\gamma }$$\end{document} for some γ<1/α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma <1/\alpha $$\end{document}, then the probability that the process stays below the moving boundary has the same asymptotic polynomial order as in the case of a constant boundary. The same is true for the increasing boundary 1+tγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 + t^{\gamma }$$\end{document} with γ<1/α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma <1/\alpha $$\end{document} under the assumption of a regularly varying right tail with index -α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\alpha $$\end{document}.
引用
收藏
页码:737 / 760
页数:23
相关论文
共 50 条