The First Passage Time Problem Over a Moving Boundary for Asymptotically Stable Lévy Processes

被引:0
|
作者
Frank Aurzada
Tanja Kramm
机构
[1] Technische Universität Darmstadt,Arbeitsgruppe Stochastik, Fachbereich Mathematik
来源
关键词
Lévy process; Moving boundary; First passage time; Boundary crossing probability; Persistence probability; 60G51;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic tail behaviour of the first passage time over a moving boundary for asymptotically α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable Lévy processes with α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <1$$\end{document}. Our main result states that if the left tail of the Lévy measure is regularly varying with index -α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$- \alpha $$\end{document}, and the moving boundary is equal to 1-tγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 - t^{\gamma }$$\end{document} for some γ<1/α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma <1/\alpha $$\end{document}, then the probability that the process stays below the moving boundary has the same asymptotic polynomial order as in the case of a constant boundary. The same is true for the increasing boundary 1+tγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 + t^{\gamma }$$\end{document} with γ<1/α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma <1/\alpha $$\end{document} under the assumption of a regularly varying right tail with index -α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\alpha $$\end{document}.
引用
收藏
页码:737 / 760
页数:23
相关论文
共 50 条
  • [1] The First Passage Time Problem Over a Moving Boundary for Asymptotically Stable Levy Processes
    Aurzada, Frank
    Kramm, Tanja
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (03) : 737 - 760
  • [2] FIRST-PASSAGE TIMES OVER MOVING BOUNDARIES FOR ASYMPTOTICALLY STABLE WALKS
    Denisov, D.
    Sakhanenko, A.
    Wachtel, V
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2019, 63 (04) : 613 - 633
  • [3] Asymptotic behaviour of first passage time distributions for Lévy processes
    R. A. Doney
    V. Rivero
    [J]. Probability Theory and Related Fields, 2013, 157 : 1 - 45
  • [4] Complete monotonicity of time-changed L?vy processes at first passage
    Vidmar, Matija
    [J]. STATISTICS & PROBABILITY LETTERS, 2023, 193
  • [5] Erratum to: Asymptotic behaviour of first passage time distributions for Lévy processes
    R. A. Doney
    V. Rivero
    [J]. Probability Theory and Related Fields, 2016, 164 : 1079 - 1083
  • [6] Joint Distribution of First-Passage Time and First-Passage Area of Certain Lévy Processes
    Mario Abundo
    Sara Furia
    [J]. Methodology and Computing in Applied Probability, 2019, 21 : 1283 - 1302
  • [7] First Passage Times of Levy Processes Over a One-Sided Moving Boundary
    Aurzada, F.
    Kramm, T.
    Savov, M.
    [J]. MARKOV PROCESSES AND RELATED FIELDS, 2015, 21 (01) : 1 - 38
  • [8] First Passage Time of a Lévy Degradation Model with Random Effects
    Narayanaswamy Balakrishnan
    Chengwei Qin
    [J]. Methodology and Computing in Applied Probability, 2019, 21 : 315 - 329
  • [9] Numerical Computation of First-Passage Times of Increasing Lévy Processes
    Mark Veillette
    Murad S. Taqqu
    [J]. Methodology and Computing in Applied Probability, 2010, 12 : 695 - 729
  • [10] First and Last Passage Times of Spectrally Positive Lévy Processes with Application to Reliability
    Christian Paroissin
    Landy Rabehasaina
    [J]. Methodology and Computing in Applied Probability, 2015, 17 : 351 - 372