Concerning P-frames and the Artin–Rees property

被引:0
|
作者
Mostafa Abedi
机构
[1] Esfarayen University of Technology,
来源
Collectanea Mathematica | 2023年 / 74卷
关键词
Frame; -frame; Artin–Rees property; Ring of fractions of ; Factor rings of ; Regular ring; 06D22; 13A30; 54A40;
D O I
暂无
中图分类号
学科分类号
摘要
Let RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}L$$\end{document} be the ring of continuous real-valued functions on a completely regular frame L. The Artin–Rees property in RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}L$$\end{document}, in the factor rings of RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}L$$\end{document} and in the rings of fractions of RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}L$$\end{document} is studied. We show that a frame L is a P-frame if and only if RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}L$$\end{document} is an Artin–Rees ring if and only if every ideal of RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}L$$\end{document} with the Artin–Rees property is an Artin–Rees ideal if and only if the factor ring RL/⟨φ⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}L/\langle \varphi \rangle $$\end{document} is an Artin–Rees ring for any φ∈RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in {\mathcal {R}}L$$\end{document}. A necessary and sufficient condition for the local rings of a reduced ring to be Artin–Rees rings is that each of its prime ideals becomes minimal. It turns out that the local rings of RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}L$$\end{document} are an Artin–Rees ring if and only if L is a P-frame. We show that the complete ring of fractions of RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}L$$\end{document} is an Artin–Rees ring if and only if L is a cozero-complemented frame, or equivalently, the set of all minimal prime ideals of the ring RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}L$$\end{document} is compact. Finally, we prove that if φ∈RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in {\mathcal {R}}L$$\end{document} such that the open quotient ↓cozφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\downarrow \!\!{{\,\mathrm{coz}\,}}\varphi $$\end{document} is a dense C-quotient of L, then the ring of fractions (RL)φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {R}}L)_\varphi $$\end{document} is regular if and only if ↓cozφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\downarrow \!\!{{\,\mathrm{coz}\,}}\varphi $$\end{document} is a P-frame.
引用
收藏
页码:279 / 297
页数:18
相关论文
共 50 条
  • [41] Artin-Rees lemma and the Izumi theorem in term of Artin function
    Rond, G
    JOURNAL OF ALGEBRA, 2006, 299 (01) : 245 - 275
  • [42] A Robust Compressed Domain Video Watermarking in P-frames with Controlled Bit Rate Increase
    Dutta, Tanima
    Sur, Arijit
    Nandi, Sukumar
    2013 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2013,
  • [43] Connection between p-frames and p-Riesz bases in locally finite SIS of LP(R)
    Aldroubi, A
    Sun, QY
    Tang, WS
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 668 - 674
  • [44] A FULL UNIFORM ARTIN-REES THEOREM
    DUNCAN, AJ
    OCARROLL, L
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 394 : 203 - 207
  • [45] Digital video watermarking in P-frames with controlled video bit-rate increase
    Noorkami, Maneli
    Mersereau, Russell M.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2008, 3 (03) : 441 - 455
  • [46] A STRATIFICATION GIVEN BY ARTIN-REES ESTIMATES
    WANG, T
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1992, 44 (01): : 194 - 205
  • [47] ON FORM IDEALS AND ARTIN-REES CONDITION
    CHIANTINI, L
    MANUSCRIPTA MATHEMATICA, 1981, 36 (02) : 125 - 145
  • [48] Desingularizations and the uniform Artin-Rees theorem
    Huneke, C
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 740 - 756
  • [49] Uniform Artin-Rees bounds for syzygies
    Aberbach, Ian M.
    Hosry, Aline
    Striuli, Janet
    ADVANCES IN MATHEMATICS, 2015, 285 : 478 - 496
  • [50] Signal representations via SIP p-frames and SIP Bessel multipliers in separable Banach spaces
    Zheng, Xianwei
    Zou, Cuiming
    Yang, Shouzhi
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2021, 19 (04)