On the Helly Number for Hyperplane Transversals to Unit Balls

被引:0
|
作者
B. Aronov
J. E. Goodman
R. Pollack
R. Wenger
机构
[1] Polytechnic University,
[2] Brooklyn,undefined
[3] NY 11201,undefined
[4] USA aronov@ziggy.poly.edu ,undefined
[5] City College,undefined
[6] City University of New York,undefined
[7] New York,undefined
[8] NY 10031,undefined
[9] USA jegcc@cunyvm.cuny.edu ,undefined
[10] Courant Institute of Mathematical Sciences,undefined
[11] New York University,undefined
[12] New York,undefined
[13] NY 10012,undefined
[14] USA pollack@geometry.cims.nyu.edu ,undefined
[15] Ohio State University,undefined
[16] Columbus,undefined
[17] OH 43210,undefined
[18] USA wenger@cis.ohio-state.edu,undefined
来源
关键词
Euclidean Space; Unit Ball; Unit Disk; Dimensional Euclidean Space; Line Transversal;
D O I
暂无
中图分类号
学科分类号
摘要
We prove two results about the Hadwiger problem of finding the Helly number for line transversals of disjoint unit disks in the plane, and about its higher-dimensional generalization to hyperplane transversals of unit balls in d -dimensional Euclidean space. These consist of (a) a proof of the fact that the Helly number remains 5 even for arbitrarily large sets of disjoint unit disks—thus correcting a 40-year-old error; and (b) a lower bound of d+3 on the Helly number for hyperplane transversals to suitably separated families of unit balls in Rd .
引用
收藏
页码:171 / 176
页数:5
相关论文
共 50 条
  • [21] HYPERPLANE TRANSVERSALS OF HOMOTHETICAL, CENTRALLY SYMMETRIC POLYTOPES
    Horst Martini
    Anita Schöbel
    Periodica Mathematica Hungarica, 2000, 39 (1-3) : 73 - 81
  • [22] A Helly-type theorem for higher-dimensional transversals
    Aronov, B
    Goodman, JE
    Pollack, R
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 21 (03): : 177 - 183
  • [23] Line transversals to blown up closed balls
    Jerónimo-Castro J.
    Roldán-Pensado E.
    Journal of Geometry, 2011, 100 (1-2) : 79 - 84
  • [24] The variance conjecture on hyperplane projections of the lpn balls
    Alonso-Gutierrez, David
    Bastero, Jesus
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (02) : 879 - 904
  • [25] HALVING BALLS BY A HYPERPLANE IN DETERMINISTIC LINEAR TIME
    Hoffmann, Michael
    Kusters, Vincent
    Miltzow, Tillmann
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2020, 11 (01) : 576 - 614
  • [26] On the number of isomorphism classes of transversals
    Kakkar, Vipul
    Shukla, R. P.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (03): : 345 - 359
  • [27] On the maximum number of Latin transversals
    Glebov, Roman
    Luria, Zur
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 141 : 136 - 146
  • [29] Line Transversals to Unit Disks
    Discrete & Computational Geometry, 2002, 28 : 379 - 387
  • [30] On the number of isomorphism classes of transversals
    VIPUL KAKKAR
    R P SHUKLA
    Proceedings - Mathematical Sciences, 2013, 123 : 345 - 359