Zero-inflated count regression models with applications to some examples

被引:0
|
作者
Bayo H. Lawal
机构
[1] American University of Nigeria,
来源
Quality & Quantity | 2012年 / 46卷
关键词
Poisson; Negative binomial; Generalized zero-inflated; Over-dispersion; Log-likelihood;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we employed SAS PROC NLMIXED (Nonlinear mixed model procedure) to analyze three example data having inflated zeros. Examples used are data having covariates and no covariates. The covariates utilized in this article have binary outcomes to simplify our analysis. Of course the analysis can readily be extended to situations with several covariates having multiple levels. Models fitted include the Poisson (P), the negative binomial (NB), the generalized Poisson (GP), and their zero-inflated variants, namely the ZIP, the ZINB and the ZIGP models respectively. Parameter estimates as well as the appropriate goodness-of-fit statistic (the deviance D) in this case are computed and in some cases, the Pearson’s X2 statistic, that is based on the variance of the relevant model distribution is also computed. Also obtained are the expected frequencies for the models and GOF tests are conducted based on the rule established by Lawal (Appl Stat 29:292–298, 1980). Our results extend previous results on the analysis of the chosen data in this example. Further, results obtained are very consistent with previous analyses on the data sets chosen for this article. We also present an hierarchical figure relating all the models employed in this paper. While we do not pretend that the results obtained are entirely new, however, the analyses give opportunities to researchers in the field the much needed means of implementing these models in SAS without having to resort to S-PLUS, R or Stata.
引用
收藏
页码:19 / 38
页数:19
相关论文
共 50 条
  • [1] Zero-inflated count regression models with applications to some examples
    Lawal, Bayo H.
    QUALITY & QUANTITY, 2012, 46 (01) : 19 - 38
  • [2] Zero-inflated modeling part I: Traditional zero-inflated count regression models, their applications, and computational tools
    Young, Derek S.
    Roemmele, Eric S.
    Yeh, Peng
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (01):
  • [3] Zero-inflated modeling part I: Traditional zero-inflated count regression models, their applications, and computational tools
    Young, Derek S.
    Roemmele, Eric S.
    Yeh, Peng
    Wiley Interdisciplinary Reviews: Computational Statistics, 2022, 14 (01)
  • [4] Marginal zero-inflated regression models for count data
    Martin, Jacob
    Hall, Daniel B.
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (10) : 1807 - 1826
  • [5] Zero-inflated Bell regression models for count data
    Lemonte, Artur J.
    Moreno-Arenas, German
    Castellares, Fredy
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (02) : 265 - 286
  • [6] The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression.
    Loeys, Tom
    Moerkerke, Beatrijs
    De Smet, Olivia
    Buysse, Ann
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (01): : 163 - 180
  • [7] Zero-Inflated Poisson Regression Models with Right Censored Count Data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    MATEMATIKA, 2011, 27 (01) : 21 - 29
  • [8] Marginalized Zero-Inflated Bell Regression Models for Overdispersed Count Data
    Amani, Kouakou Mathias
    Kouakou, Konan Jean Geoffroy
    Hili, Ouagnina
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2025, 19 (02)
  • [9] SPLINE REGRESSION FOR ZERO-INFLATED MODELS
    Opitz, T.
    Tramini, P.
    Molinari, N.
    JP JOURNAL OF BIOSTATISTICS, 2013, 9 (01) : 53 - 66
  • [10] CONSISTENT ESTIMATION OF ZERO-INFLATED COUNT MODELS
    Staub, Kevin E.
    Winkelmann, Rainer
    HEALTH ECONOMICS, 2013, 22 (06) : 673 - 686